Complete structural model of Escherichia coli RNA polymerase from a hybrid approach
- PMID: 20856905
- PMCID: PMC2939025
- DOI: 10.1371/journal.pbio.1000483
Complete structural model of Escherichia coli RNA polymerase from a hybrid approach
Abstract
The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








Similar articles
-
Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography.J Struct Biol. 1998 Dec 15;124(2-3):115-22. doi: 10.1006/jsbi.1998.4057. J Struct Biol. 1998. PMID: 10049799
-
Cryo-EM structure of Escherichia coli σ70 RNA polymerase and promoter DNA complex revealed a role of σ non-conserved region during the open complex formation.J Biol Chem. 2018 May 11;293(19):7367-7375. doi: 10.1074/jbc.RA118.002161. Epub 2018 Mar 26. J Biol Chem. 2018. PMID: 29581236 Free PMC article.
-
Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex.Elife. 2017 Mar 20;6:e25478. doi: 10.7554/eLife.25478. Elife. 2017. PMID: 28318486 Free PMC article.
-
An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase.EcoSal Plus. 2018 Aug;8(1):10.1128/ecosalplus.ESP-0004-2018. doi: 10.1128/ecosalplus.ESP-0004-2018. EcoSal Plus. 2018. PMID: 30109846 Free PMC article. Review.
-
RNA polymerase structure-function: insights into points of transcriptional regulation.Curr Opin Microbiol. 2000 Apr;3(2):118-25. doi: 10.1016/s1369-5274(00)00062-x. Curr Opin Microbiol. 2000. PMID: 10744988 Review.
Cited by
-
Identification of protein partners in mycobacteria using a single-step affinity purification method.PLoS One. 2014 Mar 24;9(3):e91380. doi: 10.1371/journal.pone.0091380. eCollection 2014. PLoS One. 2014. PMID: 24664103 Free PMC article.
-
Transcription inhibition by the depsipeptide antibiotic salinamide A.Elife. 2014 Apr 30;3:e02451. doi: 10.7554/eLife.02451. Elife. 2014. PMID: 24843001 Free PMC article.
-
Closed for business: exit-channel coupling to active site conformation in bacterial RNA polymerase.Nat Struct Mol Biol. 2014 Sep;21(9):741-2. doi: 10.1038/nsmb.2883. Nat Struct Mol Biol. 2014. PMID: 25192262 No abstract available.
-
RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):14994-14999. doi: 10.1073/pnas.1613673114. Epub 2016 Dec 12. Proc Natl Acad Sci U S A. 2016. PMID: 27956639 Free PMC article.
-
Insights into RNA polymerase catalysis and adaptive evolution gained from mutational analysis of a locus conferring rifampicin resistance.Nucleic Acids Res. 2017 Nov 2;45(19):11327-11340. doi: 10.1093/nar/gkx813. Nucleic Acids Res. 2017. PMID: 29036608 Free PMC article.
References
-
- Jokerst R. S, Weeks J. R, Zehring W. A, Greenleaf A. L. Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Mol Gen Genet. 1989;215:266–275. - PubMed
-
- Iyer L. M, Koonin E. V, Aravind L. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene. 2004;335:73–88. - PubMed
-
- Zhang G, Campbell E. A, Minakhin L, Richter C, Severinov K, et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell. 1999;98:811–824. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- GM073829/GM/NIGMS NIH HHS/United States
- R37 GM038660/GM/NIGMS NIH HHS/United States
- GM053759/GM/NIGMS NIH HHS/United States
- R01 GM067167/GM/NIGMS NIH HHS/United States
- R01 GM053759/GM/NIGMS NIH HHS/United States
- GM038660/GM/NIGMS NIH HHS/United States
- S10 RR022321/RR/NCRR NIH HHS/United States
- P30 EB009998/EB/NIBIB NIH HHS/United States
- R01 GM061898/GM/NIGMS NIH HHS/United States
- 1S10RR022321-01/RR/NCRR NIH HHS/United States
- R01 GM073829/GM/NIGMS NIH HHS/United States
- R01 GM038660/GM/NIGMS NIH HHS/United States
- GM061898/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources