Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 15;44(20):7783-9.
doi: 10.1021/es9036308.

Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems

Affiliations

Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems

Sen Yan et al. Environ Sci Technol. .

Abstract

This study investigated the influences of pH, bicarbonate, and calcium on U(VI) removal and reduction by synthetic nanoscale zerovalent iron (nanoFe(0)) particles under anoxic conditions. The results showed that the rates of U(VI) removal and reduction by nanoFe(0) varied significantly with pH and concentrations of bicarbonate and/or calcium. For instance, at pH 6.92 the pseudo-first-order rate constants of U(VI) removal decreased by 78.5% and 81.3%, and U(VI) reduction decreased by 90.3% and 89.3%, when bicarbonate and calcium concentrations were increased from 0 to 1 mM, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of UO(2) and iron (hydr)oxides as a result of the redox interactions between U(VI) and nanoFe(0). The study demonstrated the potential of using nanoFe(0) for U(VI)-contaminated site remediation and highlighted the impacts of pH, bicarbonate, and calcium on the U(VI) removal and reduction processes.

PubMed Disclaimer

Publication types

LinkOut - more resources