Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990:154:140-53; discussion 153-6.
doi: 10.1002/9780470514009.ch11.

Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism

Affiliations
Review

Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism

W Barz et al. Ciba Found Symp. 1990.

Abstract

Microbial infection of plants or elicitation of cell cultures initiates substantial metabolic changes directed at the induction of defence reactions. The antimicrobial phytoalexins deserve special attention because they represent one essential component of plant resistance. The great structural diversity of phytoalexins and possible cellular sites for their toxic activity are discussed. Pterocarpan phytoalexin biosynthesis in Cicer arietinum is an example of the induction of extended biosynthetic pathways, their modes of regulation and metabolic links with constitutive secondary product formation. Elicitation of plant tissues represents a technique to induce simultaneously the formation of phytoalexins and increased levels of constitutive or other secondary products that do not normally accumulate. The biological function of phytoalexins and the pathways of their degradation by pathogenic fungi are outlined. Detoxification of phytoalexins by fungi may have important consequences for the practical application of these defence compounds and for the genetic transformation of fungi and plants. Phytoalexins accumulate in plants or cell cultures only transiently, because they are readily degraded or polymerized by extracellular peroxidases.

PubMed Disclaimer

Publication types