Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 18;49(20):9169-77.
doi: 10.1021/ic1003319.

Highly fluorescent platinum(II) organometallic complexes of perylene and perylene monoimide, with Pt σ-bonded directly to the perylene core

Affiliations

Highly fluorescent platinum(II) organometallic complexes of perylene and perylene monoimide, with Pt σ-bonded directly to the perylene core

Sergio Lentijo et al. Inorg Chem. .

Abstract

3-Bromoperylene (BrPer) or N-(2,5-di-tert-butylphenyl)-9-bromo-perylene-3,4-dicarboximide (BrPMI) react with [Pt(PEt(3))(4)] to yield trans-[PtR(PEt(3))(2)Br] (R = Per, 1a; R = PMI, 1b). Neutral and cationic perylenyl complexes containing a Pt(PEt(3))X group have been prepared from 1a,b by substitution of the Br ligand by a variety of other ligands (NCS, CN, NO(3), CN(t)Bu, PyMe). The X-ray structures of trans-[PtR(PEt(3))(2)X] (R = Per, X = NCS (2a); R = PMI, X = NO(3) (4b); R = Per, X = CN(t)Bu (5a)) show that the perylenyl fragment remains nearly planar and is arranged almost orthogonal to the coordination plane: The three molecules appear as individual entities in the solid state, with no π-π stacking of perylenyl rings. Each platinum complex exhibits fluorescence associated to the perylene or PMI fragments with emission quantum yields, in solution at room temperature, in the range 0.30-0.80 and emission lifetimes ∼4 ns, but with significantly different emission maxima, by influence of the X ligands on Pt. The similarity of the overall luminescence spectra of these metalated complexes with the perylene or PMI strongly suggests a perylene-dominated intraligand π-π*emissive state, metal-perturbed by interaction of the platinum fragment mostly via polarization of the Ar-Pt bond.

PubMed Disclaimer