Entanglement entropy and the Fermi surface
- PMID: 20867902
- DOI: 10.1103/PhysRevLett.105.050502
Entanglement entropy and the Fermi surface
Abstract
Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S∼L(d-1)logL, a result that should be contrasted with the usual boundary law S∼L(d-1). This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.
Similar articles
-
Entanglement entropy of fermions in any dimension and the Widom conjecture.Phys Rev Lett. 2006 Mar 17;96(10):100503. doi: 10.1103/PhysRevLett.96.100503. Epub 2006 Mar 14. Phys Rev Lett. 2006. PMID: 16605718
-
Violation of the entropic area law for fermions.Phys Rev Lett. 2006 Jan 13;96(1):010404. doi: 10.1103/PhysRevLett.96.010404. Epub 2006 Jan 12. Phys Rev Lett. 2006. PMID: 16486427
-
Violation of the entanglement area law in bosonic systems with Bose surfaces: possible application to Bose metals.Phys Rev Lett. 2013 Nov 22;111(21):210402. doi: 10.1103/PhysRevLett.111.210402. Epub 2013 Nov 19. Phys Rev Lett. 2013. PMID: 24313468
-
Finite-Entanglement Scaling of 2D Metals.Phys Rev Lett. 2023 Dec 29;131(26):266202. doi: 10.1103/PhysRevLett.131.266202. Phys Rev Lett. 2023. PMID: 38215387
-
Entanglement Entropy of Black Holes.Living Rev Relativ. 2011;14(1):8. doi: 10.12942/lrr-2011-8. Epub 2011 Oct 21. Living Rev Relativ. 2011. PMID: 28179833 Free PMC article. Review.
Cited by
-
Critical non-Hermitian skin effect.Nat Commun. 2020 Oct 30;11(1):5491. doi: 10.1038/s41467-020-18917-4. Nat Commun. 2020. PMID: 33127908 Free PMC article.
-
Measuring entanglement entropy and its topological signature for phononic systems.Nat Commun. 2024 Feb 21;15(1):1601. doi: 10.1038/s41467-024-45887-8. Nat Commun. 2024. PMID: 38383526 Free PMC article.
LinkOut - more resources
Full Text Sources