Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;202(3):349-59.
doi: 10.1111/j.1748-1716.2010.02186.x. Epub 2010 Nov 9.

Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes

Affiliations
Review

Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes

D H Evans. Acta Physiol (Oxf). 2011 Jul.

Abstract

August Krogh proposed that freshwater fishes (and other freshwater animals) maintain body NaCl homoeostasis by extracting these ions from the environment via separate Na(+) /NH(4)(+) and Cl(-) /HCO(3)(-) exchangers in the gill epithelium. Subsequent data from other laboratories suggested that Na(+) uptake was more probably coupled to H(+) secretion via a vesicular proton pump (V-ATPase) electrically coupled to a Na(+) channel. However, despite uncertainty about electrochemical gradients, evidence has accrued that epithelial Na(+) /H(+) exchange indeed may be an alternative pathway for Na(+) uptake. The specific pathways for Na(+) uptake may be species and environment specific. An apical Cl(-) /HCO(3)(-) exchanger is generally accepted for most species (some species do not extract Cl(-) from freshwater), but the relative roles of anion exchanger-like (SLC4A1) vs. pendrin-like (SLC26Z4) exchangers are unknown, and also may be species specific. Most recently, data have supported the presence of an apical Na(+) + Cl(-) cotransporter (NCC-type), despite thermodynamic uncertainty. Ammonia extrusion may be via NH(3) diffusing through the paracellular junctions or NH(4) (+) substitution on both basolateral and apical ionic exchangers (Na(+) + K(+) -ATPase; Na(+) + K(+) + Cl(-) - cotransporter; and Na(+) /H(+) exchanger), but recent evidence suggests that Rhesus-glycoproteins mediate both basolateral and apical movement of ammonia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources