Intracellular release of 17-β estradiol from cationic polyamidoamine dendrimer surface-modified poly (lactic-co-glycolic acid) microparticles improves osteogenic differentiation of human mesenchymal stromal cells
- PMID: 20883116
- PMCID: PMC3045071
- DOI: 10.1089/ten.TEC.2010.0388
Intracellular release of 17-β estradiol from cationic polyamidoamine dendrimer surface-modified poly (lactic-co-glycolic acid) microparticles improves osteogenic differentiation of human mesenchymal stromal cells
Abstract
Human bone marrow mesenchymal stromal cells (MSCs) are considered a potential cell source for MSC-based bone regeneration, but improvements in the proliferation and differentiation capacity of MSCs are necessary for practical applications. Estrogen effectively improves MSC capabilities and has strong potential as a regulator of MSCs. The aim of this study was to develop a delivery system that provides intracellular release of estrogen and test its ability to improve osteogenic differentiation of MSCs. Biodegradable poly (lactic-co-glycolic acid) (PLGA) microparticles were developed that entrap 17-β estradiol (E2) and provide intracellular release of E2. The results show that we can prepare PLGA particles with efficient loading of E2 and maintain release of E2 up to 7 days. Surface modifying E2-loaded PLGA particles with cationic polyamidoamine dendrimers enabled increased uptake by human MSCs. Human MSC uptake of the E2-loaded PLGA particles significantly upregulates osteogenic differentiation markers of alkaline phosphatase and osteocalcin. In conclusion, cationic-modified PLGA particles can serve as a tool for intracellular delivery of estrogen to effectively execute estrogen regulation of MSCs. This approach has the potential to improve the osteogenic capabilities of MSCs and to develop appropriate environments of implantation for MSC-based bone tissue engineering.
Figures



Similar articles
-
Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells.Tissue Eng Part A. 2012 Apr;18(7-8):775-84. doi: 10.1089/ten.TEA.2011.0432. Epub 2012 Jan 17. Tissue Eng Part A. 2012. PMID: 21988716 Free PMC article.
-
Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates.Tissue Eng Part A. 2009 Feb;15(2):273-83. doi: 10.1089/ten.tea.2008.0055. Tissue Eng Part A. 2009. PMID: 18767971 Free PMC article.
-
Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy.Int J Nanomedicine. 2018 Sep 7;13:5231-5248. doi: 10.2147/IJN.S167142. eCollection 2018. Int J Nanomedicine. 2018. PMID: 30237710 Free PMC article.
-
Engineering poly(lactic-co-glycolic acid) (PLGA) micro- and nano-carriers for Controlled Delivery of 17β-Estradiol.Ann Biomed Eng. 2017 Jul;45(7):1697-1709. doi: 10.1007/s10439-017-1859-8. Epub 2017 Jun 20. Ann Biomed Eng. 2017. PMID: 28634732 Free PMC article. Review.
-
Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation.Int J Mol Sci. 2024 Sep 20;25(18):10127. doi: 10.3390/ijms251810127. Int J Mol Sci. 2024. PMID: 39337612 Free PMC article. Review.
Cited by
-
Shape-Memory Terpolymer Rods with 17-β-estradiol for the Treatment of Neurodegenerative Diseases: an In Vitro and In Vivo Study.Pharm Res. 2016 Dec;33(12):2967-2978. doi: 10.1007/s11095-016-2019-9. Epub 2016 Sep 14. Pharm Res. 2016. PMID: 27628625 Free PMC article.
-
Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering.Materials (Basel). 2023 Mar 10;16(6):2235. doi: 10.3390/ma16062235. Materials (Basel). 2023. PMID: 36984115 Free PMC article. Review.
-
An Injectable Microparticle Formulation Provides Long-Term Inhibition of Hypothalamic ERK1/2 Activity and Sympathetic Excitation in Rats with Heart Failure.Mol Pharm. 2020 Sep 8;17(9):3643-3648. doi: 10.1021/acs.molpharmaceut.0c00501. Epub 2020 Aug 4. Mol Pharm. 2020. PMID: 32786958 Free PMC article.
-
Proangiogenic Activity of Endometrial Epithelial and Stromal Cells in Response to Estradiol in Gelatin Hydrogels.Adv Biosyst. 2017 Sep;1(9):1700056. doi: 10.1002/adbi.201700056. Epub 2017 Aug 15. Adv Biosyst. 2017. PMID: 29230433 Free PMC article.
-
Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells.Tissue Eng Part A. 2012 Apr;18(7-8):775-84. doi: 10.1089/ten.TEA.2011.0432. Epub 2012 Jan 17. Tissue Eng Part A. 2012. PMID: 21988716 Free PMC article.
References
-
- Caplan A.I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341. - PubMed
-
- Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143. - PubMed
-
- Mauney J.R. Volloch V. Kaplan D.L. Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng. 2005;11:787. - PubMed
-
- Muschler G.F. Nitto H. Boehm C.A. Easley K.A. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19:117. - PubMed
-
- Stenderup K. Justesen J. Clausen C. Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources