Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 29;171(4):1102-8.
doi: 10.1016/j.neuroscience.2010.09.038. Epub 2010 Sep 25.

GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats

Affiliations

GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats

S Y Yu et al. Neuroscience. .

Abstract

The lateral nucleus of the amygdala (LA) is a critical structure involved in fear conditioning. We recently showed that regulated exocytosis and endocytosis of postsynaptic A-amino-3-hydroxy-5-methylisoxazole-4-propionate subtype of glutamate receptors (AMPARs) are involved in the expression of N-methyl-D-aspartate subtype glutamate receptors (NMDARs) dependent long-term potentiation (LTP) and long-term depression (LTD) in coronal slices of the LA. However, the molecular mechanisms of this effect remain unclear. In the present study, we investigated the role of distinct NMDAR subtypes in the endocytosis of AMPARs during LTD expression at the synapses of the thalamic inputs to the LA neurons. Here we show that the NMDARs antagonist DL-2-amino-5-phosphonovalerate (D-APV) blocked the induction of LTD and thus prevented endocytosis of surface AMPARs, indicating that NMDAR activation enhanced the internalization of AMPARs in LTD expression. Furthermore, the selective blocking of GluN2B-containing NMDARs completely abolished the NMDAR-induced AMPAR endocytosis, whereas preferential inhibition of GluN2A-containing NMDARs did not block the NMDAR-induced AMPAR endocytosis during LTD expression. These results suggest that there exist a preferred NMDAR subtype for AMPAR internalization and activation of GluN2B-containing NMDARs represent the predominate pathway triggered during the early stages of this NMDAR-induced endocytosis of AMPARs during LTD in the thalamic inputs to the LA of juvenile rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources