Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy
- PMID: 20884632
- PMCID: PMC2984551
- DOI: 10.1158/0008-5472.CAN-10-2664
Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy
Abstract
Doxorubicin is a highly effective cancer treatment whose use is severely limited by dose-dependent cardiotoxicity. It is well established that doxorubicin increases reactive oxygen species (ROS) production. In this study, we investigated contributions to doxorubicin cardiotoxicity from Nox2 NADPH oxidase, an important ROS source in cardiac cells, which is known to modulate several key processes underlying the myocardial response to injury. Nox2-deficient mice (Nox2-/-) and wild-type (WT) controls were injected with doxorubicin (12 mg/kg) or vehicle and studied 8 weeks later. Echocardiography indicated that doxorubicin-induced contractile dysfunction was attenuated in Nox2-/- versus WT mice (fractional shortening: 29.5±1.4 versus 25.7±1.0%; P<0.05). Similarly, in vivo pressure-volume analysis revealed that systolic and diastolic function was preserved in doxorubicin-treated Nox2-/- versus WT mice (ejection fraction: 52.6±2.5 versus 28.5±2.3%, LVdP/dtmin: -8,379±416 versus -5,198±527 mmHg s(-1); end-diastolic pressure-volume relation: 0.051±0.009 versus 0.114±0.012; P<0.001). Furthermore, in response to doxorubicin, Nox2-/- mice exhibited less myocardial atrophy, cardiomyocyte apoptosis, and interstitial fibrosis, together with reduced increases in profibrotic gene expression (procollagen IIIαI, transforming growth factor-β3, and connective tissue growth factor) and matrix metalloproteinase-9 activity, versus WT controls. These alterations were associated with beneficial changes in NADPH oxidase activity, oxidative/nitrosative stress, and inflammatory cell infiltration. We found that adverse effects of doxorubicin were attenuated by acute or chronic treatment with the AT1 receptor antagonist losartan, which is commonly used to reduce blood pressure. Our findings suggest that ROS specifically derived from Nox2 NADPH oxidase make a substantial contribution to several key processes underlying development of cardiac contractile dysfunction and remodeling associated with doxorubicin chemotherapy.
Copyright © 2010 AACR.
Figures
References
-
- Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78. - PubMed
-
- Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005;23:7685–96. - PubMed
-
- Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62. - PubMed
-
- Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–62. - PubMed
-
- Spallarossa P, Altieri P, Garibaldi S, et al. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res. 2006;69:736–45. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
