Steady-state diffusion-weighted imaging: theory, acquisition and analysis
- PMID: 20886565
- DOI: 10.1002/nbm.1509
Steady-state diffusion-weighted imaging: theory, acquisition and analysis
Abstract
Steady-state diffusion-weighted imaging (DWI) has long been recognized to offer potential benefits over conventional spin-echo methods. This family of pulse sequences is highly efficient and compatible with three-dimensional acquisitions, which could enable high-resolution, low-distortion images. However, the same properties that lead to its efficiency make steady-state imaging highly susceptible to motion and create a complicated signal with dependence on T(1), T(2) and flip angle. Recent developments in gradient hardware, motion-mitigation techniques and signal analysis offer potential solutions to these problems, reviving interest in steady-state DWI. This review offers a description of steady-state DWI signal formation and provides an overview of the current methods for steady-state DWI acquisition and analysis.
Copyright © 2010 John Wiley & Sons, Ltd.
Similar articles
-
Diffusion-weighted imaging in patients with acute brain ischemia at 3 T: current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER).Invest Radiol. 2009 Jun;44(6):351-9. doi: 10.1097/RLI.0b013e3181a00d09. Invest Radiol. 2009. PMID: 19363447
-
Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.Invest Radiol. 2009 Oct;44(10):656-61. doi: 10.1097/RLI.0b013e3181af3f0e. Invest Radiol. 2009. PMID: 19724235
-
Thin-section diffusion-weighted magnetic resonance imaging of the brain with parallel imaging.Acta Radiol. 2007 May;48(4):456-63. doi: 10.1080/02841850701297506. Acta Radiol. 2007. PMID: 17453529
-
Continuously moving table MRI in oncology.Rofo. 2010 Nov;182(11):954-64. doi: 10.1055/s-0029-1245727. Epub 2010 Oct 4. Rofo. 2010. PMID: 20922644 Review.
-
Technical aspects of MR diffusion imaging of the body.Eur J Radiol. 2010 Dec;76(3):314-22. doi: 10.1016/j.ejrad.2010.02.018. Epub 2010 Mar 29. Eur J Radiol. 2010. PMID: 20299172 Review.
Cited by
-
Diffusion time dependence of magnetic resonance diffusion signal decays: an investigation of water exchange in human brain in vivo.MAGMA. 2012 Aug;25(4):285-96. doi: 10.1007/s10334-011-0295-2. Epub 2011 Nov 24. MAGMA. 2012. PMID: 22113519
-
A unifying view on extended phase graphs and Bloch simulations for quantitative MRI.Sci Rep. 2021 Oct 28;11(1):21289. doi: 10.1038/s41598-021-00233-6. Sci Rep. 2021. PMID: 34711847 Free PMC article.
-
Unipolar MR elastography: Theory, numerical analysis and implementation.NMR Biomed. 2020 Jan;33(1):e4138. doi: 10.1002/nbm.4138. Epub 2019 Oct 30. NMR Biomed. 2020. PMID: 31664745 Free PMC article.
-
Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: A post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology.BMC Neurosci. 2018 Mar 13;19(1):11. doi: 10.1186/s12868-018-0416-1. BMC Neurosci. 2018. PMID: 29529995 Free PMC article.
-
The Digital Brain Bank, an open access platform for post-mortem imaging datasets.Elife. 2022 Mar 17;11:e73153. doi: 10.7554/eLife.73153. Elife. 2022. PMID: 35297760 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources