Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88
- PMID: 20921418
- PMCID: PMC3063593
- DOI: 10.1073/pnas.1000072107
Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88
Abstract
Rates of cell proliferation in the vertebrate intestinal epithelium are modulated by intrinsic signaling pathways and extrinsic cues. Here, we report that epithelial cell proliferation in the developing zebrafish intestine is stimulated both by the presence of the resident microbiota and by activation of Wnt signaling. We find that the response to microbial proliferation-promoting signals requires Myd88 but not TNF receptor, implicating host innate immune pathways but not inflammation in the establishment of homeostasis in the developing intestinal epithelium. We show that loss of axin1, a component of the β-catenin destruction complex, results in greater than WT levels of intestinal epithelial cell proliferation. Compared with conventionally reared axin1 mutants, germ-free axin1 mutants exhibit decreased intestinal epithelial cell proliferation, whereas monoassociation with the resident intestinal bacterium Aeromonas veronii results in elevated epithelial cell proliferation. Disruption of β-catenin signaling by deletion of the β-catenin coactivator tcf4 partially decreases the proliferation-promoting capacity of A. veronii. We show that numbers of intestinal epithelial cells with cytoplasmic β-catenin are reduced in the absence of the microbiota in both WT and axin1 mutants and elevated in animals' monoassociated A. veronii. Collectively, these data demonstrate that resident intestinal bacteria enhance the stability of β-catenin in intestinal epithelial cells and promote cell proliferation in the developing vertebrate intestine.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–260. - PubMed
-
- Abrams GD, Bauer H, Sprinz H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest. 1963;12:355–364. - PubMed
-
- Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology. 1994;107:1259–1269. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases