Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;69(1):17-22.
doi: 10.1203/PDR.0b013e3181ff61ba.

Polar Effects on Ion Transport and Cell Proliferation Induced by GC-C Ligands in Intestinal Epithelial Cells

Affiliations

Polar Effects on Ion Transport and Cell Proliferation Induced by GC-C Ligands in Intestinal Epithelial Cells

Vittoria Buccigrossi et al. Pediatr Res. 2011 Jan.

Abstract

Guanylin receptor guanylate cyclase (GC-C) peaks in neonatal intestine and is involved in either enterocyte proliferation or chloride secretion. The latter is more potent when GC-C activator guanylin, or its analog Escherichia coli heat-stable enterotoxin (ST), is added to the mucosal rather than serosal side of intestinal monolayers. By using Ussing chambers, we investigated transepithelial ion transport and enterocyte proliferation and their mechanisms in response to the addition of guanylin or ST to the mucosal or serosal side of Caco-2 monolayers and in ileal specimens from neonates. GC-C activation showed a polar pattern of the effects. GC-C mucosal activation resulted in a potent cGMP-chloride secretion activation and in a marginal enterocyte proliferation. Conversely, serosal GC-C activation induced a potent enterocyte proliferation, through MAP kinase ERK 1/2. Finally, the inhibition of ERK1/2 enhanced the Isc increase in response to serosal but not to mucosal ST stimulation, indicating that ERK1/2 also acts as a brake of chloride secretion. These data suggest that the guanylin/GC-C system plays a key role in early postnatal intestinal adaptation exploiting the polar structure of enterocyte.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources