Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 28;114(42):13487-96.
doi: 10.1021/jp104749f.

Thermodynamic and kinetic properties of a red wine pigment: catechin-(4,8)-malvidin-3-O-glucoside

Affiliations

Thermodynamic and kinetic properties of a red wine pigment: catechin-(4,8)-malvidin-3-O-glucoside

Frederico Nave et al. J Phys Chem B. .

Abstract

Catechin-(4,8)-malvidin-3-glucoside, a red pigment adduct (at acid pH) found in red wine and resulting from the reaction between malvidin-3-glucoside and flavan-3-ols during wine aging, was synthesized. The thermodynamic and kinetic constants of the network of chemical reactions were fully determined by stopped flow: (i) Direct pH jumps, from thermal equilibrated solutions at pH = 1.0 (flavylium cation, AH(+)), show three kinetic processes. The first one occurs within the mixing time of the stopped flow and leads to the formation of quinoidal bases A and/or A(-) depending on the final pH; the second one takes place with a rate constant equal to 0.075 + 33[H(+)] and was attributed to the hydration reaction that forms the pseudobases (hemiketals), B/B(-). The third process is much slower, 2 × 10(-4) s(-1), and is due to the cis-trans isomerization giving rise to a small fraction of trans-chalcones, Ct/Ct(-). (ii) Reverse pH jumps from the thermally equilibrated solution at moderate to neutral pH values back to a sufficiently acidic medium clearly distinguish three kinetic processes: the first one takes place within the dead time and is due to the protonation of the bases; the second process occurs with the same rate constant of the hydration reaction monitored by direct pH jumps and is attributed to the formation of flavylium cation from the B; the last process occurs with a rate constant of 1.8 s(-1), and results from the formation of AH(+) from Ct through B, reflecting the rate of the ring closure (tautomerization). The separation of the hydration from the tautomerization upon a reverse pH jump is only possible because at pH < 1 the former reaction is faster than the last. An identical situation was observed for malvidin-3-glucoside (oenin) for pH < 2.

PubMed Disclaimer

Publication types

LinkOut - more resources