Estrogen receptor ß activity modulates synaptic signaling and structure
- PMID: 20926671
- PMCID: PMC2956485
- DOI: 10.1523/JNEUROSCI.3264-10.2010
Estrogen receptor ß activity modulates synaptic signaling and structure
Erratum in
- J Neurosci. 2010 Dec 8;30(49):np
Abstract
Brain-synthesized estrogen has been shown to influence synaptic structure, function, and cognitive processes. However, the molecular mechanisms underlying the rapid effects of estrogen on the dendritic spines of cortical neurons are not clear. Estrogen receptor β (ERβ) is expressed in cortical neurons, and ERβ knock-out mice display impaired performance in cortically mediated processes, suggesting that signaling via this receptor has profound effects on cortical neuron function. However, the effect of rapid signaling via ERβ on dendritic spines and the signaling pathways initiated by this receptor in cortical neurons are unknown. Here, we show that activation of ERβ with the specific agonist WAY-200070 results in increased spine density and PSD-95 (postsynaptic density-95) accumulation in membrane regions. Activation of ERβ by WAY-200070 also resulted in the phosphorylation of p21-activated kinase (PAK) and extracellular signal-regulated kinase 1/2 (ERK1/2) in cultured cortical neurons, suggesting a mechanism for the regulation of the actin cytoskeleton. Moreover, we found that aromatase, an enzyme critical for estrogen production, is present at presynaptic termini, supporting a role for brain-synthesized estrogen as a neuromodulator in the cortex. These results implicate ERβ signaling in controlling dendritic spine morphology, in part via a PAK/ERK1/2-dependent pathway, and provide mechanistic insight into the rapid cellular effects of estrogen on brain function.
Figures




References
-
- Balthazart J, Ball GF. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 2006;29:241–249. - PubMed
-
- Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev. 2002;39:29–54. - PubMed
-
- Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron. 2006;49:547–562. - PubMed
-
- Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647–658. - PubMed
-
- Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology. 2008;54:1136–1142. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous