Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Jan-Feb;57(1):26-31.
doi: 10.1097/MAT.0b013e3181fcbd86.

Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves

Affiliations
Comparative Study

Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves

Thomas E Claiborne et al. ASAIO J. 2011 Jan-Feb.

Abstract

Trileaflet polymeric prosthetic aortic valves (AVs) produce hemodynamic characteristics akin to the natural AV and may be most suitable for applications such as transcatheter implantation and mechanical circulatory support (MCS) devices. Their success has not yet been realized due to problems of calcification, durability, and thrombosis. We address the latter by comparing the platelet activation rates (PARs) of an improved polymer valve design (Innovia LLC) made from poly(styrene-block-isobutylene-block-styrene) (SIBS) with the commercially available Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valve. We used our modified prothrombinase platelet activity state (PAS) assay and flow cytometry methods to measure platelet activation of a pair of 19 mm valves mounted inside a pulsatile Berlin left ventricular assist device (LVAD). The PAR of the polymer valve measured with the PAS assay was fivefold lower than that of the tissue valve (p = 0.005) and fourfold lower with flow cytometry measurements (p = 0.007). In vitro hydrodynamic tests showed clinically similar performance of the Innovia and Magna valves. These results demonstrate a significant improvement in thrombogenic performance of the polymer valve compared with our previous study of the former valve design and encourage further development of SIBS for use in heart valve prostheses.

PubMed Disclaimer

Publication types

LinkOut - more resources