Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jan 1;12(1):102-14.
doi: 10.2174/138920111793937907.

Possible consequences of blocking transient receptor potential vanilloid

Affiliations
Review

Possible consequences of blocking transient receptor potential vanilloid

Mahendra Bishnoi et al. Curr Pharm Biotechnol. .

Abstract

The cloning of the first sensory Transient Receptor Potential (TRP) channel, TRPVanilloid 1 (TRPV1) in 1997, initiated a new era of pain research and coincided with the Decade of Pain Control and Research promulgated by the United States Congress. When cloned, TRPV1 channel was shown to be predominantly expressed in nociceptors (C- and Aδ-fibers) and are activated by physical and chemical stimuli. Channel function can be amplified by transcriptional upregulation and posttranslational modification by proinflammatory agents. Indeed, TRPV1 gene disruption confirms that it is involved in transmitting inflammatory thermal hypersensitivity, but not acute thermal or mechanical pain sensitivity. Based on its distribution and functions, TRPV1 is considered as an ideal target for developing small molecule antagonists. Now, there is a growing body of evidence that TRPV1 is expressed in non-sensory neurons and non-neuronal cells. This raises the possibility of unwanted effects that may result from targeting TRPV1. A major consequence of TRPV1 blockade that has come to light in clinical trials following administration of antagonists is hyperthermia. This observation has threatened the abandonment of TRPV1 antagonists, although they are proven to be useful in certain modalities of pain. In this review, we will discuss the expression and functions of TRPV1 in various organ systems and highlight the consequences that might be associated with blocking the receptor.

PubMed Disclaimer