Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Feb-Mar;60(2-3):365-72.
doi: 10.1016/j.neuropharm.2010.10.001. Epub 2010 Oct 8.

Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons

Affiliations
Comparative Study

Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons

Clive Bate et al. Neuropharmacology. 2011 Feb-Mar.

Abstract

The prion diseases are characterised by the formation of the disease-associated isoform of the prion protein (PrP(Sc)) and the production of disease-related peptides. The prion derived peptide PrP82-146 bound readily to cortical neurons and was found within detergent resistant membranes that are commonly called lipid rafts. It was not found within lysosomes and the slow degradation of PrP82-146 resulted in a half-life of approximately 5 days. In cortical neurons pre-treated with phospholipase A(2) (PLA(2)) inhibitors (AACOCF(3) or MAFP) less PrP82-146 entered lipid rafts, more PrP82-146 was found within lysosomes and the half-life of PrP82-146 was reduced to 24 h. Similarly, pre-treatment of neurons with platelet-activating factor (PAF) receptor antagonists (Hexa-PAF and ginkgolide B) increased the entry of PrP82-146 into lysosomes and reduced its half-life. Furthermore, the addition of PAF reversed the effects of PLA(2) inhibitors on PrP82-146 trafficking. PAF controlled the amount of cholesterol in cell membranes and the effects of PAF receptor antagonists on the trafficking of PrP82-146 were reversed by the addition of cholesterol. We conclude that activation of PLA(2) and the production of PAF control a cholesterol-sensitive pathway that affects the cellular localisation and hence the fate of PrP82-146 in neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources