Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons
- PMID: 20934441
- DOI: 10.1016/j.neuropharm.2010.10.001
Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons
Abstract
The prion diseases are characterised by the formation of the disease-associated isoform of the prion protein (PrP(Sc)) and the production of disease-related peptides. The prion derived peptide PrP82-146 bound readily to cortical neurons and was found within detergent resistant membranes that are commonly called lipid rafts. It was not found within lysosomes and the slow degradation of PrP82-146 resulted in a half-life of approximately 5 days. In cortical neurons pre-treated with phospholipase A(2) (PLA(2)) inhibitors (AACOCF(3) or MAFP) less PrP82-146 entered lipid rafts, more PrP82-146 was found within lysosomes and the half-life of PrP82-146 was reduced to 24 h. Similarly, pre-treatment of neurons with platelet-activating factor (PAF) receptor antagonists (Hexa-PAF and ginkgolide B) increased the entry of PrP82-146 into lysosomes and reduced its half-life. Furthermore, the addition of PAF reversed the effects of PLA(2) inhibitors on PrP82-146 trafficking. PAF controlled the amount of cholesterol in cell membranes and the effects of PAF receptor antagonists on the trafficking of PrP82-146 were reversed by the addition of cholesterol. We conclude that activation of PLA(2) and the production of PAF control a cholesterol-sensitive pathway that affects the cellular localisation and hence the fate of PrP82-146 in neurons.
Copyright © 2010 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
