The Unscented Kalman Filter estimates the plasma insulin from glucose measurement
- PMID: 20934485
- DOI: 10.1016/j.biosystems.2010.09.012
The Unscented Kalman Filter estimates the plasma insulin from glucose measurement
Abstract
Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Similar articles
-
Identifiability and online estimation of diagnostic parameters with in the glucose insulin homeostasis.Biosystems. 2012 Mar;107(3):135-41. doi: 10.1016/j.biosystems.2011.11.003. Epub 2011 Nov 12. Biosystems. 2012. PMID: 22100871
-
Estimation of plasma insulin from plasma glucose.IEEE Trans Biomed Eng. 2002 Nov;49(11):1253-9. doi: 10.1109/TBME.2002.804599. IEEE Trans Biomed Eng. 2002. PMID: 12450355
-
Pico satellite attitude estimation via Robust Unscented Kalman Filter in the presence of measurement faults.ISA Trans. 2010 Jul;49(3):249-56. doi: 10.1016/j.isatra.2010.04.001. Epub 2010 May 8. ISA Trans. 2010. PMID: 20452589
-
Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey.IEEE Trans Cybern. 2013 Dec;43(6):1607-24. doi: 10.1109/TSMCC.2012.2230254. IEEE Trans Cybern. 2013. PMID: 23757593 Review.
-
The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods.Sensors (Basel). 2021 Mar 16;21(6):2085. doi: 10.3390/s21062085. Sensors (Basel). 2021. PMID: 33809743 Free PMC article. Review.
Cited by
-
Data analysis strategies for the Accelerating Medicines Partnership® Schizophrenia Program.Schizophrenia (Heidelb). 2025 Apr 3;11(1):53. doi: 10.1038/s41537-025-00561-w. Schizophrenia (Heidelb). 2025. PMID: 40180950 Free PMC article.
-
Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs).Sensors (Basel). 2017 Jan 15;17(1):161. doi: 10.3390/s17010161. Sensors (Basel). 2017. PMID: 28098839 Free PMC article.
-
An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes.J Diabetes Sci Technol. 2017 Jan;11(1):29-36. doi: 10.1177/1932296816666295. Epub 2016 Sep 25. J Diabetes Sci Technol. 2017. PMID: 27613658 Free PMC article.
-
Reconstructing mammalian sleep dynamics with data assimilation.PLoS Comput Biol. 2012;8(11):e1002788. doi: 10.1371/journal.pcbi.1002788. Epub 2012 Nov 29. PLoS Comput Biol. 2012. PMID: 23209396 Free PMC article.
-
Robust observer based control for plasma glucose regulation in type 1 diabetes patient using attractive ellipsoid method.IET Syst Biol. 2019 Apr;13(2):84-91. doi: 10.1049/iet-syb.2018.5054. IET Syst Biol. 2019. PMID: 33444475 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical