Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;192(24):6465-76.
doi: 10.1128/JB.00969-10. Epub 2010 Oct 8.

Evolution and population structure of Salmonella enterica serovar Newport

Affiliations

Evolution and population structure of Salmonella enterica serovar Newport

Vartul Sangal et al. J Bacteriol. 2010 Dec.

Abstract

Salmonellosis caused by Salmonella enterica serovar Newport is a major global public health concern, particularly because S. Newport isolates that are resistant to multiple drugs (MDR), including third-generation cephalosporins (MDR-AmpC phenotype), have been commonly isolated from food animals. We analyzed 384 S. Newport isolates from various sources by a multilocus sequence typing (MLST) scheme to study the evolution and population structure of the serovar. These were compared to the population structure of S. enterica serovars Enteritidis, Kentucky, Paratyphi B, and Typhimurium. Our S. Newport collection fell into three lineages, Newport-I, Newport-II, and Newport-III, each of which contained multiple sequence types (STs). Newport-I has only a few STs, unlike Newport-II or Newport-III, and has possibly emerged recently. Newport-I is more prevalent among humans in Europe than in North America, whereas Newport-II is preferentially associated with animals. Two STs of Newport-II encompassed all MDR-AmpC isolates, suggesting recent global spread after the acquisition of the bla(CMY-2) gene. In contrast, most Newport-III isolates were from humans in North America and were pansusceptible to antibiotics. Newport was intermediate in population structure to the other serovars, which varied from a single monophyletic lineage in S. Enteritidis or S. Typhimurium to four discrete lineages within S. Paratyphi B. Both mutation and homologous recombination are responsible for diversification within each of these lineages, but the relative frequencies differed with the lineage. We conclude that serovars of S. enterica provide a variety of different population structures.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
A 50% consensus tree based on 10 independent runs of ClonalFrame 1.1. The scale is measured in coalescent time units.
FIG. 2.
FIG. 2.
Neighbor-net on concatenated sequence alignment. The scale represents phylogenetic distances between the STs using a GTR+I+G substitution model with parameters estimated using Modeltest 3.7.
FIG. 3.
FIG. 3.
An MSTREE from the allelic profiles of isolates. Numbers in circles are ST designations.
FIG. 4.
FIG. 4.
Frequencies of isolates among Newport lineages from different hosts (excluding 25 isolates from food, feed, or other, unknown sources) (A), dates (excluding 8 isolates with no information) (B), continents (excluding 27 isolates from other geographic locations or lacking information) (C), and antimicrobial resistance phenotypes (excluding 19 isolates that were not tested and one isolate that was not assigned to any of the four phenotypic categories) (D).

Similar articles

Cited by

References

    1. Alcaine, S. D., Y. Soyer, L. D. Warnick, W. L. Su, S. Sukhnananda, J. Richards, E. D. Fortes, P. McDonough, T. P. Root, N. B. Dumas, Y. Grohn, and M. Wiedmann. 2006. Multilocus sequence typing supports the hypothesis that cow- and human-associated Salmonella isolates represent distinct and overlapping populations. Appl. Environ. Microbiol. 72:7575-7585. - PMC - PubMed
    1. Alcaine, S. D., S. S. Sukhnanand, L. D. Warnick, W. L. Su, P. McGann, P. McDonough, and M. Wiedmann. 2005. Ceftiofur-resistant Salmonella strains isolated from dairy farms represent multiple widely distributed subtypes that evolved by independent horizontal gene transfer. Antimicrob. Agents Chemother. 49:4061-4067. - PMC - PubMed
    1. Arlet, G., T. J. Barrett, P. Butaye, A. Cloeckaert, M. R. Mulvey, and D. G. White. 2006. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect. 8:1945-1954. - PubMed
    1. Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712. - PubMed
    1. Beltran, P., J. M. Musser, R. Helmuth, J. J. Farmer III, W. M. Frerichs, I. K. Wachsmuth, K. Ferris, A. C. McWhorter, J. G. Wells, A. Cravioto, and R. K. Selander. 1988. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc. Natl. Acad. Sci. U. S. A. 85:7753-7757. - PMC - PubMed

Publication types

Substances

LinkOut - more resources