Optimizing quantitative in vivo fluorescence imaging with near-infrared quantum dots
- PMID: 20936710
- PMCID: PMC8366552
- DOI: 10.1002/cmmi.409
Optimizing quantitative in vivo fluorescence imaging with near-infrared quantum dots
Abstract
Quantum dots (QDs) are fluorescent nanoparticles with broad excitation and narrow, wavelength-tunable emission spectra. They are used extensively for in vitro fluorescence imaging studies and more recently for in vivo small animal and pre-clinical studies. To date there has been little concern about the selection of QD size (and thus emission wavelength peak) and excitation wavelengths, as they have little relevance to the results of in vitro studies. In vivo imaging, however, poses additional constraints, such as the scattering and absorption by tissue, which may influence the signal intensity at the body surface. Here, we demonstrate that longer-wavelength excitation and emission yield less quantization error in measured relative fluorescence intensity, using three near-infrared QDs (QD655, QD705 and QD800) applied to in vivo lymphatic imaging, and a range of excitation wavelengths from the blue to the red. Statistically significant differences in quantization error were observed between nearly all pairs of excitation wavelengths (445-490, 503-555, 575-605, 615-665 and 671-705 nm). Similarly, quantization error decreased with longer emission wavelengths (655, 705 and 800 nm). Light absorbance and scattering were demonstrated to be more potent factors than absorbance efficiency of QDs in producing quantization error in the measured fluorescence intensity. As a result, while wavelengths can be adjusted for qualitative experiments, the longest possible wavelengths should be used if quantification is desired during QD imaging experiments.
Copyright © 2010 John Wiley & Sons, Ltd.
Figures




Similar articles
-
64Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-quantum dot-vascular endothelial growth factor.2008 Jul 1 [updated 2008 Aug 12]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2008 Jul 1 [updated 2008 Aug 12]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641777 Free Books & Documents. Review.
-
Quantum dot 800–prostate-specific membrane antigen antibody J591.2011 Feb 28 [updated 2011 May 18]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2011 Feb 28 [updated 2011 May 18]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 21634075 Free Books & Documents. Review.
-
QD800-Anti-epidermal growth factor receptor monoclonal antibody nanoparticles.2013 Jan 6 [updated 2013 Apr 4]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2013 Jan 6 [updated 2013 Apr 4]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 23586108 Free Books & Documents. Review.
-
Quantum dot800-poly(ethylene glycol)-c(Arg-Gly-Asp-d-Tyr-Lys).2011 Mar 21 [updated 2011 Jun 16]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2011 Mar 21 [updated 2011 Jun 16]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 21656984 Free Books & Documents. Review.
-
Quantum dot-prostate-specific membrane antigen antibody J591.2005 Sep 30 [updated 2011 Feb 14]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2005 Sep 30 [updated 2011 Feb 14]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641246 Free Books & Documents. Review.
Cited by
-
In vivo imaging of lymphatic drainage of cerebrospinal fluid in mouse.Fluids Barriers CNS. 2013 Dec 21;10(1):35. doi: 10.1186/2045-8118-10-35. Fluids Barriers CNS. 2013. PMID: 24360130 Free PMC article.
-
Fe Doped CdTeS Magnetic Quantum Dots for Bioimaging.J Mater Chem B. 2013 Dec 7;1(45):6312-6320. doi: 10.1039/C3TB20859A. J Mater Chem B. 2013. PMID: 24634776 Free PMC article.
-
An update on recent advances in fluorescent materials for fluorescence molecular imaging: a review.RSC Adv. 2025 Jun 30;15(28):22267-22284. doi: 10.1039/d5ra03102h. eCollection 2025 Jun 30. RSC Adv. 2025. PMID: 40599579 Free PMC article. Review.
References
-
- Weissleder R A clearer vision for in vivo imaging. Nat Biotechnol 2001; 19: 316–317. - PubMed
-
- Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007; 28: 4717–4732. - PubMed
-
- Efros AL. Interband absorption of light in a semiconductor sphere. Soviet Phys Semiconductors-USSR 1982; 16: 772–775.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials