Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 11;29(1):133.
doi: 10.1186/1756-9966-29-133.

The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma

Affiliations

The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma

Linwei Li et al. J Exp Clin Cancer Res. .

Retraction in

Abstract

Background: The esophageal cancer related gene 4 (ECRG4) was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503). ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC) associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC.

Methods: Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting.

Results: The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P < 0.05), which did not affect cell adhesion capacity (P > 0.05). Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P < 0.05), through inducing the increased expression of p53 and p21 proteins.

Conclusion: ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Evaluation of ECRG4 gene expression and cell growth curve of EC9706/pcDNA3.1 and EC9706/pcDNA3.1-ECRG4. (A) ECRG4 mRNA was detected in EC9706/pcDNA3.1-ECRG4 cells by RT-PCR. M: Marker; Lane 1: EC9706/pcDNA3.1; Lane 2: EC9706/pcDNA3.1-ECRG4; Lane 3: EC9706 cells. (B) ECRG4 protein (17 KD) was detected in EC9706/pcDNA3.1-ECRG4 cells by Western blot. Lane 1: EC9706 cells; Lane 2: EC9706/pcDNA3.1; Lane 3: EC9706/pcDNA3.1-ECRG4. (C) Cell growth curve of EC9706/pcDNA3.1 and EC9706/pcDNA3.1-ECRG4 by MTT assay (P < 0.05).
Figure 2
Figure 2
Effect of ECRG4 overexpression on tumor cells migration. Representative photos and statistic plots of migration assay in EC9706/pcDNA3.1-ECRG4 and EC9706/pcDNA3.1 cells (×200). The number of EC9706/pcDNA3.1-ECRG4 cells transversed the Transwell membrane was decreased compared with that of EC9706/pcDNA3.1 cells (P < 0.05). Error bars represent standard deviation from mean value.
Figure 3
Figure 3
Effect of ECRG4 overexpression on tumor cells invasion. Representative photos and statistic plots of invasion assay in EC9706/pcDNA3.1-ECRG4 and EC9706/pcDNA3.1 cells (×200). The number of EC9706/pcDNA3.1-ECRG4 cells transversed the Transwell membrane was decreased compared with that of EC9706/pcDNA3.1 cells (P < 0.05). Error bars represent standard deviation from mean value.
Figure 4
Figure 4
ECRG4 may be involved in p53 pathway. Representative photos and statistic plots of relative protein expression levels in EC9706/pcDNA3.1-ECRG4 and EC9706/pcDNA3.1. Analysis of cell's total proteins by Western blot showed that p53 and p53 target gene p21 expressions were increased in EC9706/pcDNA3.1-ECRG4 cells compared with in EC9706/pcDNA3.1 cells (P < 0.05). Lane 1: EC9706/pcDNA3.1-ECRG4; Lane 2: EC9706/pcDNA3.1. *, P < 0.05, compared with EC9706/pcDNA3.1.

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. - DOI - PubMed
    1. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2–9. doi: 10.1016/j.semradonc.2006.09.003. - DOI - PubMed
    1. Luo A, Kong J, Hu G, Liew CC, Xiong M, Wang X, Ji J, Wang T, Zhi H, Wu M, Liu Z. Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene. 2004;23:1291–1299. doi: 10.1038/sj.onc.1207218. - DOI - PubMed
    1. Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 2000;60:4735–4739. - PubMed
    1. Bi MX, Han WD, Lu SX. Using Lab On-line to Clone and Identify the Esophageal Cancer Related Gene 4. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai) 2001;33:257–261. - PubMed

Publication types

MeSH terms