Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 10;10(11):4651-6.
doi: 10.1021/nl102867a.

High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography

Affiliations

High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography

Yuerui Lu et al. Nano Lett. .

Abstract

Nanostructured silicon thin film solar cells are promising, due to the strongly enhanced light trapping, high carrier collection efficiency, and potential low cost. Ordered nanostructure arrays, with large-area controllable spacing, orientation, and size, are critical for reliable light-trapping and high-efficiency solar cells. Available top-down lithography approaches to fabricate large-area ordered nanostructure arrays are challenging due to the requirement of both high lithography resolution and high throughput. Here, a novel ordered silicon nano-conical-frustum array structure, exhibiting an impressive absorbance of 99% (upper bound) over wavelengths 400-1100 nm by a thickness of only 5 μm, is realized by our recently reported technique self-powered parallel electron lithography that has high-throughput and sub-35-nm high resolution. Moreover, high-efficiency (up to 10.8%) solar cells are demonstrated, using these ordered ultrathin silicon nano-conical-frustum arrays. These related fabrication techniques can also be transferred to low-cost substrate solar energy harvesting device applications.

PubMed Disclaimer

Publication types

LinkOut - more resources