Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 30;5(9):e13088.
doi: 10.1371/journal.pone.0013088.

Human impacts flatten rainforest-savanna gradient and reduce adaptive diversity in a rainforest bird

Affiliations

Human impacts flatten rainforest-savanna gradient and reduce adaptive diversity in a rainforest bird

Adam H Freedman et al. PLoS One. .

Erratum in

  • PLoS One. 2010;5(10). doi: 10.1371/annotation/d50ccb46-fd60-450d-8c2c-4c3be512deac

Abstract

Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Potential and actual rainforest distribution, study sites, and consequences of gradient flattening for morphological diversity.
(A) Land cover map based upon MODIS IGBP classification at 1 km spatial resolution for 2000 . This classification includes information on vegetation cover and seasonality, and defines areas that, despite the extent of current deforestation, encompass suitable ecological conditions for rainforest. Areas classified as forest are broadly consistent with White's reconstruction of historical rainforest distribution . (B) Present rainforest based on MODIS percent tree cover from 2001 , and location of study sites in West and Central Africa (indicated with circles). For sampling information, see Table S2. Sampling in West Africa coincides with a region where rainforest should occur, but where large losses of tree cover have led to convergence in habitat structure between the rainforest and ecotone zones. Red pixels indicate areas of recent deforestation (1982–2000), based upon tree cover data from measurements by the AVHRR satellite sensor . Recent deforestation and gradient flattening have been greater in West than in Central Africa. (C) Projected distribution of PC1 (overall body size) of A. virens, estimated from a linear regression of PC1 on tree cover. This projection shows that in West Africa, other than in Sierra Leone, there is very little rainforest-ecotone divergence in PC1, and that deforestation in West Africa has led to the flattening of the morphological cline along the rainforest-savanna gradient. In contrast, in Central Africa, which has experienced much less deforestation, morphological divergence along the rainforest-savanna gradient persists. The same pattern is apparent for other traits in A. virens associated with tree cover (Figure S1).
Figure 2
Figure 2. Greater flattening of the rainforest-savanna gradient in West than Central Africa.
Rainforest-savanna gradients are represented by MODIS percentage tree cover plotted against latitude for West and Central Africa. For each region, mean tree cover was calculated for each 5km latitudinal band and plotted along the south-north direction. For easier comparison, the gradient for West Africa is shifted southward by 2.5° to account for the shift in latitudinal position of the rainforest-ecotone boundary between West and Central Africa. See Text S1 for details. The dashed line indicates the approximate position of the boundary between rainforest and the rainforest-savanna ecotone, and the solid black lines indicate least-square regression lines fit to the regional trends in tree cover-by-latitude trends.
Figure 3
Figure 3. Morphological differences between rainforest and ecotone populations of A. virens in West and Central Africa.
Morphological differences between rainforest and ecotone populations are smaller in West Africa than in Central Africa consistent with a flatter environmental gradient. Error bars indicate ±1 SE about the mean; sample sizes are adjacent to error bars. PC 1 is based upon tarsus, wing, tail, and upper mandible length. Size-corrected traits (indicated with SC superscript) are computed from regressions of log-transformed measurements on log-transformed tarsus length. Measurements of individual traits are in millimeters. Significant Wilcoxon rank sum tests (p≤0.001) comparing rainforest and ecotone habitats within regions are indicated by ***. Sample sizes and results of regressions of morphological traits on tree cover are provided in Table S1.
Figure 4
Figure 4. Historical and contemporary morphological differences between West and Central Africa rainforest populations of A. virens.
Regional populations are more morphologically divergent now than they were historically, due to West African populations becoming more ecotone-like as a result of deforestation. Error bars indicate ±1 SE about the mean; sample sizes area adjacent to error bars. PC1 is based upon tarsus, wing, tail, and upper mandible length, and to facilitate visualization are normalized, within time period, by the largest individual value so that PCs scale from −1 to +1. Measurements of individual traits are in millimeters. Significant Wilcoxon rank sums tests comparing regions within each time interval are indicated by ** and ***, denoting p≤0.01 and p≤0.001, respectively.

Similar articles

Cited by

References

    1. Smith TB, Wayne RK, Girman DJ, Bruford MW. A role for ecotones in generating rainforest biodiversity. Science. 1997;276:1855–1857.
    1. Schneider CJ, Smith TB, Larison B, Moritz C. A test of alternative models of diversification in tropical rainforests: Ecological gradients vs. rainforest refugia. Proc Natl Acad Sci U S A. 1999;94:13869–13873. - PMC - PubMed
    1. Ogden R, Thorpe RS. Molecular evidence for ecological speciation in tropical habitats. Proc Natl Acad Sci U S A. 2002;99:13612–13615. - PMC - PubMed
    1. Slabbekoorn H, Smith TB. Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution. 2002;56:1849–1858. - PubMed
    1. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, et al. Speciation through sensory drive in cichlid fish. Nature. 2008;455:620–626. - PubMed

Publication types