Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 5;12(21):4892-5.
doi: 10.1021/ol1020515.

Allyl transfer to aldehydes and ketones by Brønsted acid activation of allyl and crotyl 1,3,2-dioxazaborolidines

Affiliations

Allyl transfer to aldehydes and ketones by Brønsted acid activation of allyl and crotyl 1,3,2-dioxazaborolidines

Maureen K Reilly et al. Org Lett. .

Abstract

Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (type I mechanism).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Relationship between rate of allylation and concentration of acid.
Figure 2
Figure 2
Possible allyl transfer reagent generated under the reaction conditions.
Figure 3
Figure 3
Calculated Transitions States 1,3,2-oxazaborolidine from 25 (left) and 1,3,2,6-dioxazaborocane from 26 (right).

References

    1. Denmark SE, Fu J. Chem Rev. 2003;103:2763–2794. - PubMed
    2. Hatano M, Ishihara K. Synthesis. 2008;11:1647–1675.
    3. Lachance H, Hall DG. Org React. 2008;73:1–554.
    1. Keck GE, Tarbet KH, Geraci LS. J Am Chem Soc. 1993;115:8467–8468.
    2. Teo Y-C, Goh J-D, Loh T-P. Org Lett. 2005;7:2743–2745. - PubMed
    1. Kinnaird JW, Ng PY, Kubota K, Wang X, Leighton JL. J Am Chem Soc. 2002;124:7920–7921. - PubMed
    2. Kubota K, Leighton JL. Angew Chem, Int Ed. 2003;42:946–948. - PubMed
    3. Hackman BM, Lombardi PJ, Leighton JL. Org Lett. 2004;6:4375–4377. - PubMed
    1. Roush WR, Walts AE, Hoong LK. J Am Chem Soc. 1985;107:8186–8190.
    2. Brown HC, Jadhav PK. J Am Chem Soc. 1983;105:2092–2093.
    3. Corey EJ, Yu CM, Kim SS. J Am Chem Soc. 1989;111:5495–5496.
    4. Burgos CH, Canales E, Matos K, Soderquist JA. J Am Chem Soc. 2005;127:8044–8049. - PubMed
    5. Canales E, Prasad KG, Soderquist JA. J Am Chem Soc. 2005;127:11572–11573. - PubMed
    6. Kanai M, Wada R, Shibuguchi T, Shibasaki M. Pure Appl Chem. 2008;80:1055–1062.
    7. Lou S, Moquist PN, Schaus SE. J Am Chem Soc. 2006;128:12660–12661. - PubMed
    8. Barnett DS, Moquist PN, Schaus SE. Angew Chem, Int Ed. 2009;48:8679–8682. - PMC - PubMed
    1. Kennedy JWJ, Hall DG. J Am Chem Soc. 2002;124:11586–11587. - PubMed
    2. Yu SH, Ferguson MJ, McDonald R, Hall DG. J Am Chem Soc. 2005;127:12808–12809. - PubMed
    3. Rauniyar V, Hall DG. J Am Chem Soc. 2004;126:4518–2519. - PubMed
    4. Hall DG. Pure Appl Chem. 2008;80:913–927.
    5. Rauniyar V, Zhai H, Hall DG. J Am Chem Soc. 2008;130:8481–8490. - PubMed

Publication types