cAMP- and Ca²(+) /calmodulin-dependent protein kinases mediate inotropic, lusitropic and arrhythmogenic effects of urocortin 2 in mouse ventricular myocytes
- PMID: 20942811
- PMCID: PMC3031072
- DOI: 10.1111/j.1476-5381.2010.01067.x
cAMP- and Ca²(+) /calmodulin-dependent protein kinases mediate inotropic, lusitropic and arrhythmogenic effects of urocortin 2 in mouse ventricular myocytes
Abstract
Background and purpose: Urocortin 2 is beneficial in heart failure, but the underlying cellular mechanisms are not completely understood. Here we have characterized the functional effects of urocortin 2 on mouse cardiomyocytes and elucidated the underlying signalling pathways and mechanisms.
Experimental approach: Mouse ventricular myocytes were field-stimulated at 0.5 Hz at room temperature. Fractional shortening and [Ca²(+)](i) transients were measured by an edge detection and epifluorescence system respectively. Western blots were carried out on myocyte extracts with antibodies against total phospholamban (PLN) and PLN phosphorylated at serine-16.
Key results: Urocortin 2 elicited time- and concentration-dependent positive inotropic and lusitropic effects (EC₅₀ : 19 nM) that were abolished by antisauvagine-30 (10 nM, n= 6), a specific antagonist of corticotrophin releasing factor (CRF) CRF₂ receptors. Urocortin 2 (100 nM) increased the amplitude and decreased the time constant of decay of the underlying [Ca²(+)](i) transients. Urocortin 2 also increased PLN phosphorylation at serine-16. H89 (2 µM) or KT5720 (1 µM), two inhibitors of protein kinase A (PKA), as well as KN93 (1 µM), an inhibitor of Ca²(+)/calmodulin-dependent protein kinase II (CaMKII), suppressed the urocortin 2 effects on shortening and [Ca²(+)](i) transients. In addition, urocortin 2 also elicited arrhythmogenic events consisting of extra cell shortenings and extra [Ca²(+)](i) increases in diastole. Urocortin 2-induced arrhythmogenic events were significantly reduced in cells pretreated with KT5720 or KN93.
Conclusions and implications: Urocortin 2 enhanced contractility in mouse ventricular myocytes via activation of CRF₂ receptors in a cAMP/PKA- and Ca²(+)/CaMKII-dependent manner. This enhancement was accompanied by Ca²(+)-dependent arrhythmogenic effects mediated by PKA and CaMKII.
© 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Figures
References
-
- Asaba K, Makino S, Nishiyama M, Hashimoto K. Regulation of type-2 corticotropin-releasing hormone receptor mRNA in rat heart by glucocorticoids and urocortin. J Cardiovasc Pharmacol. 2000;36:493–497. - PubMed
-
- Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA, et al. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem. 2000;275:8508–8514. - PubMed
-
- Brar BK, Stephanou A, Knight R, Latchman DS. Activation of protein kinase B/Akt by urocortin is essential for its ability to protect cardiac cells against hypoxia/reoxygenation-induced cell death. J Mol Cell Cardiol. 2002;34:483–492. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
