Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization
- PMID: 20943665
- PMCID: PMC3003401
- DOI: 10.1074/jbc.M110.185850
Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization
Abstract
Crystal structures of the unique hexokinase KlHxk1 of the yeast Kluyveromyces lactis were determined using eight independent crystal forms. In five crystal forms, a symmetrical ring-shaped homodimer was observed, corresponding to the physiological dimer existing in solution as shown by small-angle x-ray scattering. The dimer has a head-to-tail arrangement such that the small domain of one subunit interacts with the large domain of the other subunit. Dimer formation requires favorable interactions of the 15 N-terminal amino acids that are part of the large domain with amino acids of the small domain of the opposite subunit, respectively. The head-to-tail arrangement involving both domains of the two KlHxk1 subunits is appropriate to explain the reduced activity of the homodimer as compared with the monomeric enzyme and the influence of substrates and products on dimer formation and dissociation. In particular, the structure of the symmetrical KlHxk1 dimer serves to explain why phosphorylation of conserved residue Ser-15 may cause electrostatic repulsions with nearby negatively charged residues of the adjacent subunit, thereby inducing a dissociation of the homologous dimeric hexokinases KlHxk1 and ScHxk2. Two complex structures of KlHxk1 with bound glucose provide a molecular model of substrate binding to the open conformation and the subsequent classical domain closure motion of yeast hexokinases. The entirety of the novel data extends the current concept of glucose signaling in yeast and complements the induced-fit model by integrating the events of N-terminal phosphorylation and dissociation of homodimeric yeast hexokinases.
Figures







Similar articles
-
In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1.Biochem Biophys Res Commun. 2013 May 31;435(2):313-8. doi: 10.1016/j.bbrc.2013.03.121. Epub 2013 Apr 10. Biochem Biophys Res Commun. 2013. PMID: 23583397
-
The unique hexokinase of Kluyveromyces lactis. Molecular and functional characterization and evaluation of a role in glucose signaling.J Biol Chem. 2003 Oct 10;278(41):39280-6. doi: 10.1074/jbc.M305706200. Epub 2003 Jul 25. J Biol Chem. 2003. PMID: 12882981
-
Crystallization and preliminary X-ray diffraction studies of hexokinase KlHxk1 from Kluyveromyces lactis.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 May 1;63(Pt 5):430-3. doi: 10.1107/S1744309107018271. Epub 2007 Apr 20. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007. PMID: 17565189 Free PMC article.
-
Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis.Mol Cell Proteomics. 2014 Mar;13(3):860-75. doi: 10.1074/mcp.M113.032714. Epub 2014 Jan 16. Mol Cell Proteomics. 2014. PMID: 24434903 Free PMC article.
-
Structural dynamics of yeast hexokinase during catalysis.Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):43-52. doi: 10.1098/rstb.1981.0058. Philos Trans R Soc Lond B Biol Sci. 1981. PMID: 6115422 Review.
Cited by
-
Regulatory Function of Hexokinase 2 in Glucose Signaling in Saccharomyces cerevisiae.J Biol Chem. 2016 Aug 5;291(32):16477. doi: 10.1074/jbc.L116.735514. J Biol Chem. 2016. PMID: 27496957 Free PMC article. No abstract available.
-
Molecular mechanism of selective substrate engagement and inhibitor disengagement of cysteine synthase.J Biol Chem. 2021 Jan-Jun;296:100041. doi: 10.1074/jbc.RA120.014490. Epub 2020 Nov 24. J Biol Chem. 2021. PMID: 33162395 Free PMC article.
-
Plasmodium vivax and human hexokinases share similar active sites but display distinct quaternary architectures.IUCrJ. 2020 Mar 26;7(Pt 3):453-461. doi: 10.1107/S2052252520002456. eCollection 2020 May 1. IUCrJ. 2020. PMID: 32431829 Free PMC article.
-
Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.J Biol Chem. 2015 Mar 6;290(10):6243-55. doi: 10.1074/jbc.M114.595074. Epub 2015 Jan 15. J Biol Chem. 2015. PMID: 25593311 Free PMC article.
-
Worth the weight: Sub-Pocket EXplorer (SubPEx), a weighted-ensemble method to enhance binding-pocket conformational sampling.bioRxiv [Preprint]. 2023 May 5:2023.05.03.539330. doi: 10.1101/2023.05.03.539330. bioRxiv. 2023. Update in: J Chem Theory Comput. 2023 Sep 12;19(17):5677-5689. doi: 10.1021/acs.jctc.3c00478. PMID: 37251500 Free PMC article. Updated. Preprint.
References
-
- Moreno F., Ahuatzi D., Riera A., Palomino C. A., Herrero P. (2005) Biochem. Soc. Trans. 33, 265–268 - PubMed
-
- Rolland F., Sheen J. (2005) Biochem. Soc. Trans. 33, 269–271 - PubMed
-
- Matschinsky F. M., Magnuson M. A., Zelent D., Jetton T. L., Doliba N., Han Y., Taub R., Grimsby J. (2006) Diabetes 55, 1–12 - PubMed
-
- Rolland F., Baena-Gonzalez E., Sheen J. (2006) Annu. Rev. Plant Biol. 57, 675–709 - PubMed
-
- Rolland F., Winderickx J., Thevelein J. M. (2001) Trends Biochem. Sci. 26, 310–317 - PubMed
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources