Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)
- PMID: 20943698
- PMCID: PMC3049082
- DOI: 10.1098/rspb.2010.1968
Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)
Abstract
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.
Figures


Similar articles
-
Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows.Ecol Lett. 2008 Mar;11(3):258-65. doi: 10.1111/j.1461-0248.2007.01141.x. Epub 2007 Dec 7. Ecol Lett. 2008. PMID: 18070099
-
Diversifying selection on MHC class I in the house sparrow (Passer domesticus).Mol Ecol. 2009 Apr;18(7):1331-40. doi: 10.1111/j.1365-294X.2009.04105.x. Mol Ecol. 2009. PMID: 19368641
-
Reciprocal positive effects on parasitemia between coinfecting haemosporidian parasites in house sparrows.BMC Ecol Evol. 2022 Jun 2;22(1):73. doi: 10.1186/s12862-022-02026-5. BMC Ecol Evol. 2022. PMID: 35655150 Free PMC article.
-
Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas - A review.Infect Genet Evol. 2020 Jul;81:104244. doi: 10.1016/j.meegid.2020.104244. Epub 2020 Feb 19. Infect Genet Evol. 2020. PMID: 32087345 Review.
-
Immunity, resistance and tolerance in bird-parasite interactions.Parasite Immunol. 2013 Nov;35(11):350-61. doi: 10.1111/pim.12047. Parasite Immunol. 2013. PMID: 23800152 Review.
Cited by
-
A quantitative and qualitative comparison of illumina MiSeq and 454 amplicon sequencing for genotyping the highly polymorphic major histocompatibility complex (MHC) in a non-model species.BMC Res Notes. 2017 Jul 28;10(1):346. doi: 10.1186/s13104-017-2654-1. BMC Res Notes. 2017. PMID: 28754172 Free PMC article.
-
Parasite-mediated selection of major histocompatibility complex variability in wild brandt's voles (Lasiopodomys brandtii) from Inner Mongolia, China.BMC Evol Biol. 2013 Jul 12;13:149. doi: 10.1186/1471-2148-13-149. BMC Evol Biol. 2013. PMID: 23848494 Free PMC article.
-
Diversity, loss, and gain of malaria parasites in a globally invasive bird.PLoS One. 2011;6(7):e21905. doi: 10.1371/journal.pone.0021905. Epub 2011 Jul 11. PLoS One. 2011. PMID: 21779353 Free PMC article.
-
Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis).Immunogenetics. 2014 Dec;66(12):693-704. doi: 10.1007/s00251-014-0800-7. Epub 2014 Sep 4. Immunogenetics. 2014. PMID: 25186067
-
MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.PLoS One. 2013 Aug 30;8(8):e72647. doi: 10.1371/journal.pone.0072647. eCollection 2013. PLoS One. 2013. PMID: 24023631 Free PMC article.
References
-
- Forde S. E., Thompson J. N., Holt R. D., Bohannan B. J. M. 2008. Coevolution drives temporal changes in fitness and diversity across environments in a bacteria–bacteriophage interaction. Evolution 62, 1830–1839 - PubMed
-
- Laine A. L., Tellier A. 2008. Heterogeneous selection promotes maintenance of polymorphism in host–parasite interactions. Oikos 117, 1281–128810.1111/j.0030-1299.2008.16563.x (doi:10.1111/j.0030-1299.2008.16563.x) - DOI - DOI
-
- Vale P. F., Stjernman M., Little T. J. 2008. Temperature-dependent costs of parasitism and maintenance of polymorphism under genotype-by-environment interactions. J. Evol. Biol. 21, 1418–142710.1111/j.1420-9101.2008.01555.x (doi:10.1111/j.1420-9101.2008.01555.x) - DOI - DOI - PubMed
-
- Kaufman J. 2000. The simple chicken major histocompatibility complex: life and death in the face of pathogens and vaccines. Phil. Trans. R. Soc. Lond. B 355, 1077–108410.1098/rstb.2000.0645 (doi:10.1098/rstb.2000.0645) - DOI - DOI - PMC - PubMed
-
- Jann O. C., Werling D., Chang J. S., Haig D., Glass E. J. 2008. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol. Biol. 8, 288.10.1186/1471-2148-8-288 (doi:10.1186/1471-2148-8-288) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials