Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;96(1):1-12.
doi: 10.1002/jbm.a.32952. Epub 2010 Oct 13.

Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating

Affiliations

Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating

Debrupa Lahiri et al. J Biomed Mater Res A. 2011 Jan.

Abstract

This work evaluates the effect of carbon nanotube (CNT) addition to plasma-sprayed hydroxyapatite (HA) coating on its tribological behavior, biocompatibility of the coating, and cytotoxicity of CNT-containing wear debris. Biological response of the CNT-containing wear debris is critical for osteoblasts, the bone-forming cells, and macrophages, the cells that clear up wear debris from blood stream. The addition of 4 wt % CNTs to HA coating reduces the volume of wear debris generation by 80% because of the improved elastic modulus and fracture toughness. CNT reinforcement has a pronounced effect on the particle size in the wear debris and subsequent biological response. There was a slight increase in the numbers and viability of osteoblasts grown on HA-CNT compared with HA alone. The cytotoxic effect of HA and HA-CNT debris to macrophages and osteoblasts was similar, demonstrating that loose CNT does not pose a problem to these cells.

PubMed Disclaimer

Publication types

LinkOut - more resources