Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010:471:205-28.
doi: 10.1016/S0076-6879(10)71012-0. Epub 2010 Mar 1.

In vitro and in vivo analysis of the ArcB/A redox signaling pathway

Affiliations

In vitro and in vivo analysis of the ArcB/A redox signaling pathway

Adrián F Alvarez et al. Methods Enzymol. 2010.

Abstract

The Arc (anoxic redox control) two-component system (TCS) is a complex signal transduction system that plays an important role in regulating energy metabolism at the level of transcription in bacteria. This system comprises the ArcB protein, a hybrid membrane-associated sensor kinase, and the ArcA protein, a typical response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphosphorylates ArcA via a His→Asp→His→Asp phosphorelay. Under aerobic conditions, the ArcB kinase activity is silenced by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Under such conditions, ArcB acts as a phosphatase that catalyzes the dephosphorylation of ArcA-P and thereby releasing its transcriptional regulation. This chapter describes general in vitro and in vivo assays and strategies that have been used to characterize the ArcB/A two-component signal transduction system, which could, also, be applied to most other TCS.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources