Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach
- PMID: 20952331
- DOI: 10.1109/TMI.2010.2087390
Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach
Abstract
Optical coherence tomography (OCT) is a noninvasive, depth-resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present a semi-automated segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for the OCT images, which suffer from low contrast and are highly corrupted by noise. A multiphase framework with a circular shape prior is adopted in order to model the boundaries of retinal layers and estimate the shape parameters using least squares. We use a contextual scheme to balance the weight of different terms in the energy functional. The results from various synthetic experiments and segmentation results on OCT images of rats are presented, demonstrating the strength of our method to detect the desired retinal layers with sufficient accuracy even in the presence of intensity inhomogeneity resulting from blood vessels. Our algorithm achieved an average Dice similarity coefficient of 0.84 over all segmented retinal layers, and of 0.94 for the combined nerve fiber layer, ganglion cell layer, and inner plexiform layer which are the critical layers for glaucomatous degeneration.
Similar articles
-
Intra-retinal layer segmentation in optical coherence tomography using an active contour approach.Med Image Comput Comput Assist Interv. 2009;12(Pt 2):649-56. doi: 10.1007/978-3-642-04271-3_79. Med Image Comput Comput Assist Interv. 2009. PMID: 20426167
-
Intra-retinal layer segmentation in optical coherence tomography images.Opt Express. 2009 Dec 21;17(26):23719-28. doi: 10.1364/OE.17.023719. Opt Express. 2009. PMID: 20052083
-
Automated layer segmentation of optical coherence tomography images.IEEE Trans Biomed Eng. 2010 Oct;57(10):2605-8. doi: 10.1109/TBME.2010.2055057. Epub 2010 Jun 28. IEEE Trans Biomed Eng. 2010. PMID: 20595078
-
Optical coherence tomography in imaging of macular diseases.Klin Oczna. 2010;112(4-6):138-46. Klin Oczna. 2010. PMID: 20825070 Review.
-
[Optical coherence tomography, an important new tool in the investigation of the retina].Ned Tijdschr Geneeskd. 2005 Aug 20;149(34):1884-91. Ned Tijdschr Geneeskd. 2005. PMID: 16136741 Review. Dutch.
Cited by
-
Obtaining Thickness Maps of Corneal Layers Using the Optimal Algorithm for Intracorneal Layer Segmentation.Int J Biomed Imaging. 2016;2016:1420230. doi: 10.1155/2016/1420230. Epub 2016 May 9. Int J Biomed Imaging. 2016. PMID: 27247559 Free PMC article.
-
Deep Learning-Based Retinal Nerve Fiber Layer Thickness Measurement of Murine Eyes.Transl Vis Sci Technol. 2021 Jul 1;10(8):21. doi: 10.1167/tvst.10.8.21. Transl Vis Sci Technol. 2021. PMID: 34297789 Free PMC article.
-
Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks.Biomed Opt Express. 2017 Jun 16;8(7):3292-3316. doi: 10.1364/BOE.8.003292. eCollection 2017 Jul 1. Biomed Opt Express. 2017. PMID: 28717568 Free PMC article.
-
Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa.Biomed Opt Express. 2011 Sep 1;2(9):2493-503. doi: 10.1364/BOE.2.002493. Epub 2011 Aug 1. Biomed Opt Express. 2011. PMID: 21991543 Free PMC article.
-
Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model.Heliyon. 2019 Feb 28;5(2):e01271. doi: 10.1016/j.heliyon.2019.e01271. eCollection 2019 Feb. Heliyon. 2019. PMID: 30891515 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources