Total Bregman divergence and its applications to DTI analysis
- PMID: 20952336
- PMCID: PMC3091005
- DOI: 10.1109/TMI.2010.2086464
Total Bregman divergence and its applications to DTI analysis
Abstract
Divergence measures provide a means to measure the pairwise dissimilarity between "objects," e.g., vectors and probability density functions (pdfs). Kullback-Leibler (KL) divergence and the square loss (SL) function are two examples of commonly used dissimilarity measures which along with others belong to the family of Bregman divergences (BD). In this paper, we present a novel divergence dubbed the Total Bregman divergence (TBD), which is intrinsically robust to outliers, a very desirable property in many applications. Further, we derive the TBD center, called the t-center (using the l(1)-norm), for a population of positive definite matrices in closed form and show that it is invariant to transformation from the special linear group. This t-center, which is also robust to outliers, is then used in tensor interpolation as well as in an active contour based piecewise constant segmentation of a diffusion tensor magnetic resonance image (DT-MRI). Additionally, we derive the piecewise smooth active contour model for segmentation of DT-MRI using the TBD and present several comparative results on real data.
Figures







Similar articles
-
A robust variational approach for simultaneous smoothing and estimation of DTI.Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17. Neuroimage. 2013. PMID: 23165324 Free PMC article.
-
DTI segmentation using an information theoretic tensor dissimilarity measure.IEEE Trans Med Imaging. 2005 Oct;24(10):1267-77. doi: 10.1109/TMI.2005.854516. IEEE Trans Med Imaging. 2005. PMID: 16229414
-
Total Bregman Divergence and its Applications to Shape Retrieval.Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010:3463-3468. doi: 10.1109/CVPR.2010.5539979. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010. PMID: 24077369 Free PMC article.
-
Structural insights into the rodent CNS via diffusion tensor imaging.Trends Neurosci. 2012 Jul;35(7):412-21. doi: 10.1016/j.tins.2012.04.010. Epub 2012 May 30. Trends Neurosci. 2012. PMID: 22651954 Free PMC article. Review.
-
Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.Clin Anat. 2015 Jan;28(1):88-95. doi: 10.1002/ca.22349. Epub 2014 Feb 4. Clin Anat. 2015. PMID: 24497009 Review.
Cited by
-
UNSUPERVISED AUTOMATIC WHITE MATTER FIBER CLUSTERING USING A GAUSSIAN MIXTURE MODEL.Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525. doi: 10.1109/ISBI.2012.6235600. Proc IEEE Int Symp Biomed Imaging. 2012. PMID: 23285315 Free PMC article.
-
Efficient Recursive Algorithms for Computing the Mean Diffusion Tensor and Applications to DTI Segmentation★.Comput Vis ECCV. 2012;7578:390-401. doi: 10.1007/978-3-642-33786-4_29. Comput Vis ECCV. 2012. PMID: 24058923 Free PMC article.
-
Segmentation of high angular resolution diffusion MRI using sparse riemannian manifold clustering.IEEE Trans Med Imaging. 2014 Feb;33(2):301-17. doi: 10.1109/TMI.2013.2284360. Epub 2013 Oct 3. IEEE Trans Med Imaging. 2014. PMID: 24108748 Free PMC article.
-
A robust variational approach for simultaneous smoothing and estimation of DTI.Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17. Neuroimage. 2013. PMID: 23165324 Free PMC article.
-
Multi-class DTI Segmentation: A Convex Approach.Med Image Comput Comput Assist Interv. 2012 Oct;2012:115-123. Med Image Comput Comput Assist Interv. 2012. PMID: 25177735 Free PMC article.
References
-
- Thomas JA, Cover TM. Elements of Information Theory. New York: Wiley; 1991.
-
- Mahalanobis P. Proc. Nat. Inst. Sci. India: 1936. On the generalised distance in statistics; pp. 49–55.
-
- Amari S. Differential-Geometrical Methods in Statistics. Heidelberg, Germany: Springer; 1985.
-
- Banerjee A, Merugu S, Dhillon IS, Ghosh J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005;vol. 6:1705–1749.
-
- Nielsen F, Nock R. On the smallest enclosing information disk. Inf. Process. Lett. 2008;vol. 105:93–97.