Travelling waves in hyperbolic chemotaxis equations
- PMID: 20953726
- DOI: 10.1007/s11538-010-9586-4
Travelling waves in hyperbolic chemotaxis equations
Abstract
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically.
Similar articles
-
Travelling waves in hybrid chemotaxis models.Bull Math Biol. 2014 Feb;76(2):377-400. doi: 10.1007/s11538-013-9924-4. Epub 2013 Dec 18. Bull Math Biol. 2014. PMID: 24347253
-
Traveling wave solutions from microscopic to macroscopic chemotaxis models.J Math Biol. 2010 Nov;61(5):739-61. doi: 10.1007/s00285-009-0317-0. J Math Biol. 2010. PMID: 20037760
-
A user's guide to PDE models for chemotaxis.J Math Biol. 2009 Jan;58(1-2):183-217. doi: 10.1007/s00285-008-0201-3. Epub 2008 Jul 15. J Math Biol. 2009. PMID: 18626644 Review.
-
Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.J Math Biol. 2015 Jan;70(1-2):1-44. doi: 10.1007/s00285-013-0748-5. Epub 2013 Dec 24. J Math Biol. 2015. PMID: 24366373
-
Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations.Bull Math Biol. 2008 Aug;70(6):1570-607. doi: 10.1007/s11538-008-9322-5. Epub 2008 Jul 19. Bull Math Biol. 2008. PMID: 18642047 Review.
Cited by
-
Travelling wave analysis in chemotaxis: case of starvation.Springerplus. 2016 Jun 29;5(1):917. doi: 10.1186/s40064-016-2507-8. eCollection 2016. Springerplus. 2016. PMID: 27386361 Free PMC article.
-
Bacterial chemotaxis without gradient-sensing.J Math Biol. 2015 May;70(6):1359-80. doi: 10.1007/s00285-014-0790-y. Epub 2014 May 28. J Math Biol. 2015. PMID: 24865467
-
Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation.J Math Biol. 2015 Oct;71(4):847-81. doi: 10.1007/s00285-014-0842-3. Epub 2014 Oct 15. J Math Biol. 2015. PMID: 25315439
-
Directional persistence of chemotactic bacteria in a traveling concentration wave.Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16235-40. doi: 10.1073/pnas.1101996108. Epub 2011 Sep 14. Proc Natl Acad Sci U S A. 2011. PMID: 21918111 Free PMC article.
-
A Mathematical Modelling Study of Chemotactic Dynamics in Cell Cultures: The Impact of Spatio-temporal Heterogeneity.Bull Math Biol. 2023 Sep 8;85(10):98. doi: 10.1007/s11538-023-01194-9. Bull Math Biol. 2023. PMID: 37684435 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources