Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jul-Aug;65(4):237-41.
doi: 10.1179/acb.2010.051.

Aetiology and physiopathology of preeclampsia and related forms

Affiliations
Free article
Review

Aetiology and physiopathology of preeclampsia and related forms

S Lorquet et al. Acta Clin Belg. 2010 Jul-Aug.
Free article

Abstract

Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and oedema, resolves on placental delivery. Its pathogenesis is thought to be associated to a hypoxic placenta. Placental hypoxia is responsible for the maternal vascular dysfunction via the increased placental release of anti-angiogenic factors such as soluble flt1 and endoglin. These soluble receptors bind VEGF, PLGF and TGFbeta1 and 3 in the maternal circulation, causing endothelial dysfunction in many maternal tissues. Despite these recent and important new molecular findings, it is important to consider that normal pregnancy is also characterized by systemic inflammation, oxidative stress and alterations in levels of angiogenic factors and vascular reactivity. Both the placenta and maternal vasculatures are major sources of reactive oxygen and nitrogen species which can produce powerful pro-oxidants that covalently modify proteins and alter vascular function in preeclampsia. Finally, the recent demonstration of activating auto-antibodies to the Angiotensin 1 receptor that experimentally play a major pathogenic role in preeclampsia further indicates the pleiotropism of aetiologies of this condition.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources