Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;23(2):425-35.
doi: 10.1016/j.cellsig.2010.10.017. Epub 2010 Oct 15.

Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide

Affiliations

Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide

Daniela Arias-Salvatierra et al. Cell Signal. 2011 Feb.

Abstract

Inflammatory stimulus during development increases the risk for adverse neurologic outcome. One possible mechanism is disrupting neuronal migration. Using lipopolysaccharide (LPS)-treatment to assess inflammatory stimulus on neuronal migration of cerebellar granule neurons, we previously found that LPS-activation increased the neuronal migration. The precise mechanisms behind these effects have not been investigated. Independently, it was shown that nitric oxide (NO(•-)) regulates neuronal migration during development, that NO(•-) is produced by inducible nitric oxide synthase (iNOS) in response to LPS through the activation of nuclear factor (NF)-κB, and that LPS induce the expression of genes under the transcriptional control of NF-κB in primary cultures from developing mouse cerebellum. To investigate the relationship between these events, we used this culture model to study the role of NO(•-) produced by iNOS through NF-κB signaling pathway, in the effect of LPS on neuron migration. LPS increased NO(•-) production, iNOS protein levels and NF-κB nuclear levels; concomitantly with NO(•-) production, LPS increased the neuronal migration as compared to non stimulated cultures. The necessary roles of the NO(•-) and iNOS were demonstrated by chelating of NO(•-) with hemoglobin and the inhibition of iNOS by 1400W. Each of these treatments reduced neuronal migration induced by LPS. The role of NF-κB was showed by using the inhibitor JSH-23, which decreased NO(•-) production and neuronal migration in LPS activated cultures. These results suggest that neuronal migration during development is susceptible to be modified by pro-inflammatory stimulus such as LPS through intracellular pathways associated with their receptors.

PubMed Disclaimer

Publication types

MeSH terms