Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 30;185(2-3):703-9.
doi: 10.1016/j.jhazmat.2010.09.076. Epub 2010 Oct 1.

Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene

Affiliations

Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene

Yanzheng Gao et al. J Hazard Mater. .

Abstract

An available remediation technique--arbuscular mycorrhizal phytoremediation (AMPR)--is further proposed for soils contaminated with phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs) utilizing a greenhouse pot experiment. The initial concentrations of phenanthrene and/or pyrene in soils were 103 mg kg(-1) and 74 mg kg(-1), respectively. The host plant was alfalfa (Medicago sativa L.), and the experimental arbuscular mycorrhizal fungi (AMF) were Glomus mosseae and G. etunicatum. More than 98.6% and 88.1% of phenanthrene and pyrene were degraded after 70 days in soils with AMPR. Use of multiple mycorrhizal species significantly promoted degradation of PAHs in soils. The co-contaminant (pyrene) present clearly inhibited the degradation of a single PAH (phenanthrene) in soil. Mycorrhizal colonization caused increased accumulation of PAHs in plant roots but a decrease in shoot. However, plant uptake contributed negligibly to PAH dissipation in AMPR, and plant accumulated PAHs amounted to less than 3.24% of total PAH degradation in mycorrhizal soils. In contrast, the optimized microbiota in mycorrhizal association was responsible for PAH degradation in AMPR. The high rate of PAH dissipation in mycorrhizal soils, the evident promotion of PAH degradation by AM colonization, and the healthy plant growth suggest encouraging opportunities for AMPR of PAH-contaminated soils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources