Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells
- PMID: 20956525
- PMCID: PMC3001013
- DOI: 10.1074/jbc.M110.151076
Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells
Abstract
IFNα exerts potent inhibitory activities against malignant melanoma cells in vitro and in vivo, but the mechanisms by which it generates its antitumor effects remain unknown. We examined the effects of interferon α (IFNα) on the expression of human members of the Schlafen (SLFN) family of genes, a group of cell cycle regulators that mediate growth-inhibitory responses. Using quantitative RT-real time PCR, we found detectable basal expression of all the different human SLFN genes examined (SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14), in malignant melanoma cells and primary normal human melanocytes, but SLFN5 basal expression was suppressed in all analyzed melanoma cell lines. Treatment of melanoma cells with IFNα resulted in induction of expression of SLFN5 in malignant cells, suggesting a potential involvement of this gene in the antitumor effects of IFNα. Importantly, stable knockdown of SLFN5 in malignant melanoma cells resulted in increased anchorage-independent growth, as evidenced by enhanced colony formation in soft agar assays. Moreover, SLFN5 knockdown also resulted in increased invasion in three-dimensional collagen, suggesting a dual role for SLFN5 in the regulation of invasion and anchorage-independent growth of melanoma cells. Altogether, our findings suggest an important role for the SLFN family of proteins in the generation of the anti-melanoma effects of IFNα and for the first time directly implicate a member of the human SLFN family in the regulation of cell invasion.
Figures







Similar articles
-
Expression and regulatory effects of murine Schlafen (Slfn) genes in malignant melanoma and renal cell carcinoma.J Biol Chem. 2013 Nov 15;288(46):33006-15. doi: 10.1074/jbc.M113.460741. Epub 2013 Oct 2. J Biol Chem. 2013. PMID: 24089532 Free PMC article.
-
Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells.Mol Cell Biol. 2015 Aug;35(15):2684-98. doi: 10.1128/MCB.00019-15. Epub 2015 May 26. Mol Cell Biol. 2015. PMID: 26012550 Free PMC article.
-
Schlafen family is a prognostic biomarker and corresponds with immune infiltration in gastric cancer.Front Immunol. 2022 Aug 25;13:922138. doi: 10.3389/fimmu.2022.922138. eCollection 2022. Front Immunol. 2022. PMID: 36090985 Free PMC article.
-
Cancer stem cells and human malignant melanoma.Pigment Cell Melanoma Res. 2008 Feb;21(1):39-55. doi: 10.1111/j.1755-148X.2007.00427.x. Pigment Cell Melanoma Res. 2008. PMID: 18353142 Free PMC article. Review.
-
Growth control of melanoma cells and melanocytes by cytokines.Recent Results Cancer Res. 1995;139:169-82. doi: 10.1007/978-3-642-78771-3_12. Recent Results Cancer Res. 1995. PMID: 7597288 Review.
Cited by
-
Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma.Oncogene. 2021 May;40(18):3273-3286. doi: 10.1038/s41388-021-01761-1. Epub 2021 Apr 12. Oncogene. 2021. PMID: 33846574 Free PMC article.
-
Methylation of SLFN11 promotes gastric cancer growth and increases gastric cancer cell resistance to cisplatin.J Cancer. 2019 Oct 15;10(24):6124-6134. doi: 10.7150/jca.32511. eCollection 2019. J Cancer. 2019. PMID: 31762822 Free PMC article.
-
Human Schlafen 5 regulates reversible epithelial and mesenchymal transitions in breast cancer by suppression of ZEB1 transcription.Br J Cancer. 2020 Aug;123(4):633-643. doi: 10.1038/s41416-020-0873-z. Epub 2020 Jun 3. Br J Cancer. 2020. PMID: 32488136 Free PMC article.
-
Schlafen-5 inhibits LINE-1 retrotransposition.iScience. 2023 Sep 19;26(10):107968. doi: 10.1016/j.isci.2023.107968. eCollection 2023 Oct 20. iScience. 2023. PMID: 37810251 Free PMC article.
-
Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma.Oncogene. 2017 Oct 26;36(43):6006-6019. doi: 10.1038/onc.2017.205. Epub 2017 Jul 3. Oncogene. 2017. PMID: 28671669 Free PMC article.
References
-
- Pestka S., Langer J. A., Zoon K. C., Samuel C. E. (1987) Annu. Rev. Biochem. 56, 727–777 - PubMed
-
- Katze M. G., He Y., Gale M., Jr. (2002) Nat. Rev. Immunol. 2, 675–687 - PubMed
-
- Parmar S., Platanias L. C. (2003) Curr. Opin Oncol. 15, 431–439 - PubMed
-
- Kirkwood J. M., Strawderman M. H., Ernstoff M. S., Smith T. J., Borden E. C., Blum R. H. (1996) J. Clin. Oncol. 14, 7–17 - PubMed
-
- Kirkwood J. M., Ibrahim J. G., Sondak V. K., Richards J., Flaherty L. E., Ernstoff M. S., Smith T. J., Rao U., Steele M., Blum R. H. (2000) J. Clin. Oncol. 18, 2444–2458 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases