Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy
- PMID: 20957114
- PMCID: PMC2950410
- DOI: 10.2147/ijn.s11643
Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy
Abstract
Diabetic neuropathy (DN) is a debilitating disorder occurring in most diabetic patients without a viable treatment yet. The present work examined the protective effect of (25)Mg-PMC(16) nanoparticle (porphyrin adducts of cyclohexil fullerene-C60) in a rat model of streptozotocin (STZ)-induced DN. (25)Mg-PMC(16) (0.5 lethal dose(50) [LD(50)]) was administered intravenously in two consecutive days before intraperitoneal injection of STZ (45 mg/kg). (24)Mg-PMC(16) and MgCl(2) were used as controls. Blood 2,3-diphosphoglycerate (2,3-DPG), oxidative stress biomarkers, adenosine triphosphate (ATP) level in dorsal root ganglion (DRG) neurons were determined as biomarkers of DN. Results indicated that 2,3-DPG and ATP decreased whereas oxidative stress increased by induction of DN which all were improved in (25)Mg-PMC(16)-treated animals. No significant changes were observed by administration of (24)Mg-PMC(16) or MgCl(2) in DN rats. It is concluded that in DN, oxidative stress initiates injuries to DRG neurons that finally results in death of neurons whereas administration of (25)Mg-PMC(16) by release of Mg and increasing ATP acts protectively.
Keywords: 25Mg-magnetic isotope effect; adenosine triphosphate; diabetes; nanotechnology; neuropathy; oxidative stress; porphyrin-fullerene nanoparticles.
Figures




References
-
- Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. - PubMed
-
- Fernyhough P, Huang TJ, Verkhratsky A. Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy. J Peripher Nerv Syst. 2003;8(4):227–235. - PubMed
-
- Douglas W, Zochodne MD. Diabetic Neuropathies. Neuromuscul Disord. 2000;2:23–29.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials