Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct:1209:83-90.
doi: 10.1111/j.1749-6632.2010.05748.x.

Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle

Affiliations
Review

Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle

Michela Vezzoli et al. Ann N Y Acad Sci. 2010 Oct.

Abstract

High-mobility group box-1 (HMGB1) is a prototypical endogenous signal that links tissue necrosis and wound healing. Extracellular HMGB1 has apparently contrasting biological actions: it sustains inflammation (with the possible establishment of autoimmunity or of self-maintaining tissue damage) while activating and recruiting stem cells, which foster tissue repair. However, little is known about the role environmental cues play in the extracellular functions of HMGB1. The skeletal muscle is an optimal tissue model to help us unravel these underlying molecular events. Here, sterile injury triggers a potent inflammatory response that includes infiltration by inflammatory leukocytes and the parallel activation, proliferation, and fusion of muscle-specific stem cells. Recent data suggest that the regulation of environmental redox is critical for the bioactivity of HMGB1, which is extremely sensitive to oxidation. Moreover, data suggest a potential role for infiltrating alternatively activated macrophages to influence the outcome of inflammatory responses to sterile skeletal muscle necrosis.

PubMed Disclaimer

Publication types