Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec;56(2-3):123-33.
doi: 10.1016/0009-3084(90)90095-9.

Hydrocarbon chain packing modes in lipids: effect of altered sub-cell dimensions and chain rotation

Affiliations
Free article

Hydrocarbon chain packing modes in lipids: effect of altered sub-cell dimensions and chain rotation

P R Maulik et al. Chem Phys Lipids. 1990 Dec.
Free article

Abstract

The lateral hydrocarbon chain packing modes of lipids have been described in terms of specific hydrocarbon sub-cells as deduced from single crystal structural studies. To understand the changes in hydrocarbon chain packing in lipid bilayers induced by variations in temperature, hydration, ion-binding, etc., we have examined the effect on the calculated X-ray diffraction pattern of (a) systematic variations in the dimensions of the hydrocarbon sub-cell and (b) the effect of chain rotation at fixed lattice sites. For the O perpendicular (orthorhombic) sub-cell, the a and b sub-cell parameters were varied from as = 4.96 to 4.85 A and bs = 7.42 to 8.40 A in six steps and the positions (s = 2 sin theta/lambda) and intensities (Icalc = F2) of the strong sub-cell reflections calculated. In this way, the conversion of the O perpendicular sub-cell (with either fixed chain orientations or simulated chain rotation) to the hexagonal (H) sub-cell (with chain rotation) was followed. Notably, the two strong reflections characteristic of the O perpendicular sub-cell at 4.12 A (110) and 3.71 A (020) show progressive shifts in position and intensity, finally merging to give the strong (O1O) reflection at 4.2 A characteristic of the hexagonal sub-cell. Similar calculations were performed for the orthorhombic (O' perpendicular) and monoclinic (M parallel) sub-cells. This approach can be used to analyze changes in the X-ray diffraction data due to modifications of the hydrocarbon chain packing modes characteristic of simple and complex lipids.

PubMed Disclaimer

Publication types

LinkOut - more resources