Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 21;8(24):5576-82.
doi: 10.1039/c0ob00106f. Epub 2010 Oct 20.

Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

Affiliations

Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

Matyas Tursky et al. Org Biomol Chem. .

Abstract

A straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl(2)](2)/MsOH or RuCl(3)·xH(2)O/phosphine (phosphine = PPh(3) or xantphos). The reaction does not require any stoichiometric additives and only produces water and dihydrogen as byproducts. Anilines containing methyl, methoxy, chloro and fluoro substituents can participate in the cyclocondensation. Meta-substituted anilines give good regioselectivity for 6-substituted indoles, while unsymmetrical diols afford excellent regioselectivity for the indole isomer with an aryl or large alkyl group in the 2-position. The mechanism for the cyclocondensation presumably involves initial formation of the α-hydroxyketone from the diol. The ketone subsequently reacts with aniline to generate the α-hydroxyimine which rearranges to the corresponding α-aminoketone. Acid- or metal-catalysed electrophilic ring-closure with the release of water then furnishes the indole product.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources