Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 28;114(42):11202-9.
doi: 10.1021/jp102840t.

Coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields

Affiliations

Coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields

Ryuji Itakura et al. J Phys Chem A. .

Abstract

We investigate coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields in the state-resolved manner. When neutral NO molecules are partly ionized in intense laser fields (I(0) > 35 TW/cm(2)), a hole in the rotational wave packet of the remaining neutral NO is created because of the ionization rate depending on the alignment angle of the molecular axis with respect to the laser polarization direction. Rotational state distributions of NO are experimentally observed, and then the characteristic feature that the population at higher J levels is increased by the ionization can be identified. Numerical calculation for solving time-dependent rotational Schrödinger equations including the effect of the ionization is carried out. The numerical results suggest that NO molecules aligned perpendicular to the laser polarization direction are dominantly ionized at the peak intensity of I(0) = 42 TW/cm(2), where the multiphoton ionization is preferred rather than the tunneling ionization.

PubMed Disclaimer

LinkOut - more resources