Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Jul;41(2):495-506.
doi: 10.1007/s00726-010-0768-z. Epub 2010 Oct 21.

Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ

Affiliations
Comparative Study

Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ

Shripad N Surwase et al. Amino Acids. 2011 Jul.

Abstract

L-DOPA is an amino acid derivative and most potent drug used against Parkinson's disease, generally obtained from Mucuna pruriens seeds. In present communication, we have studied the in vitro production of L-DOPA from L-tyrosine by novel bacterium Bacillus sp. JPJ. This bacterium produced 99.4% of L-DOPA from L-tyrosine in buffer (pH 8) containing 1 mg ml(-1) cell mass incubated at 40°C for 60 min. The combination of CuSO(4) and L-ascorbic acid showed the inducing effect at concentrations of 0.06 and 0.04 mg ml(-1), respectively. The activated charcoal 2 mg ml(-1) was essential for maximum bioconversion of L-tyrosine to L-DOPA and the crude tyrosinase activity was 2.7 U mg(-1) of tyrosinase. Kinetic studies showed significant values of Y (p/s) (0.994), Q (s) (0.500) and q (s) (0.994) after optimization of the process. The production of L-DOPA was confirmed by analytical techniques such as HPTLC, HPLC and GC-MS. This is the first report on rapid and efficient production of L-DOPA from L-tyrosine by bacterial source which is more effective than the plant, fungal and yeast systems.

PubMed Disclaimer

Publication types

LinkOut - more resources