Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;277(22):4741-54.
doi: 10.1111/j.1742-4658.2010.07880.x. Epub 2010 Oct 21.

Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon α-induced early antiviral signalling

Affiliations
Free article

Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon α-induced early antiviral signalling

Tim Maiwald et al. FEBS J. 2010 Nov.
Free article

Abstract

Type I interferons (IFN) are important components of the innate antiviral response. A key signalling pathway activated by IFNα is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Major components of the pathway have been identified. However, critical kinetic properties that facilitate accelerated initiation of intracellular antiviral signalling and thereby promote virus elimination remain to be determined. By combining mathematical modelling with experimental analysis, we show that control of dynamic behaviour is not distributed among several pathway components but can be primarily attributed to interferon regulatory factor 9 (IRF9), constituting a positive feedback loop. Model simulations revealed that increasing the initial IRF9 concentration reduced the time to peak, increased the amplitude and enhanced termination of pathway activation. These model predictions were experimentally verified by IRF9 over-expression studies. Furthermore, acceleration of signal processing was linked to more rapid and enhanced expression of IFNα target genes. Thus, the amount of cellular IRF9 is a crucial determinant for amplification of early dynamics of IFNα-mediated signal transduction.

PubMed Disclaimer

Publication types

MeSH terms

Substances