Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;7(6):066002.
doi: 10.1088/1741-2560/7/6/066002. Epub 2010 Oct 22.

A composite SWNT-collagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix

Affiliations

A composite SWNT-collagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix

Z Tosun et al. J Neural Eng. 2010 Dec.

Abstract

Unique in their structure and function, single-walled carbon nanotubes (SWNTs) have received significant attention due to their potential to create unique conductive materials. For neural applications, these conductive materials hold promise as they may enhance regenerative processes. However, like other nano-scaled biomaterials it is important to have a comprehensive understanding how these materials interact with cell systems and how the biological system responds to their presence. These investigations aim to further our understanding of SWNT-cell interactions by assessing the effect SWNT/collagen hydrogels have on PC12 neuronal-like cells seeded within and (independently) on top of the composite material. Two types of collagen hydrogels were prepared: (1) SWNTs dispersed directly within the collagen (SWNT/COL) and (2) albumin-coated SWNTs prepared using the surfactant 'sodium cholate' to improve dispersion (AL-SWNT/COL) and collagen alone serving as a control (COL). SWNT dispersion was significantly improved when using surfactant-assisted dispersion. The enhanced dispersion resulted in a stiffer, more conductive material with an increased collagen fiber diameter. Short-term cell interactions with PC12 cells and SWNT composites have shown a stimulatory effect on cell proliferation relative to plain collagen controls. In parallel to these results, p53 gene displayed normal expression levels, which indicates the absence of nanoparticle-induced DNA damage. In summary, these mechanically tunable SWNT-collagen scaffolds show the potential for enhanced electrical activity and have shown positive in vitro biocompatibility results offering further evidence that SWNT-based materials have an important role in promoting neuronal regeneration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources