Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov;15(11):1046-52.
doi: 10.1038/mp.2010.17.

Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress

Affiliations
Review

Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress

K N Manolopoulos et al. Mol Psychiatry. 2010 Nov.

Abstract

Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.

PubMed Disclaimer

Publication types

MeSH terms

Substances