Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May;86(2):493-510.
doi: 10.1111/j.1469-185X.2010.00157.x. Epub 2010 Oct 24.

An introduction to biological nuclear magnetic resonance spectroscopy

Affiliations
Review

An introduction to biological nuclear magnetic resonance spectroscopy

John H F Bothwell et al. Biol Rev Camb Philos Soc. 2011 May.

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of (1) H NMR spectroscopy in mixture analysis and metabolomics, the use of (13) C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways ('fluxomics') and the use of (31) P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances-such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation-are opening new avenues for today's biological NMR spectroscopists.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources