Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 15;194(2):235-41.
doi: 10.1016/j.jneumeth.2010.10.013. Epub 2010 Oct 21.

Use of a near-infrared diode laser to activate mouse cutaneous nociceptors in vitro

Affiliations

Use of a near-infrared diode laser to activate mouse cutaneous nociceptors in vitro

Alaine L Pribisko et al. J Neurosci Methods. .

Abstract

A skin-nerve preparation is useful for study of heat transduction mechanisms of A- and C-high threshold primary afferents (nociceptors), but the small dimension and liquid environment of the skin organ bath do not readily accommodate conventional noxious heat delivery systems. For these reasons, a 980 nm (near-infrared) diode laser was tested for activation and differentiation of cutaneous afferents. Current to the laser driver was varied. Exposure time and area, angle of approach, and stand-off distance from the bath solution surface were held constant. Seventy-eight fibers were classified by: conduction velocity, mechanical threshold, and responsiveness to laser radiation. A subset of the sampled fibers was also tested for sensitivity to convective heat. Most C (30/43) and a few A (6/25) nociceptors responded to laser irradiation. All low mechanical threshold primary afferents (10/10) were unresponsive to laser irradiation. Laser-sensitive fibers responded to convective heat, whereas laser-insensitive fibers did not. Laser-induced responses were consistent with literature reports of responses to traditional heat stimulation. Laser stimulation proved to be a rapid, unobtrusive method for reproducible heat stimulation of primary afferents of the mouse skin-nerve preparation. It is effective for defining subpopulations of primary afferent fibers and holds promise as a tool for gauging modification of C-fiber activity.

PubMed Disclaimer

Publication types

LinkOut - more resources