Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 30;185(2-3):647-52.
doi: 10.1016/j.jhazmat.2010.09.067. Epub 2010 Sep 29.

Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

Affiliations

Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

Elaheh Molaakbari et al. J Hazard Mater. .

Abstract

In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 μL ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL(-1), the detection limit was 0.37 ng mL(-1) (3S(b)/m, n = 7) and the relative standard deviation was ±1.63% (n = 7, C = 200 ng mL(-1)). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources