Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors
- PMID: 20972437
- DOI: 10.1038/nnano.2010.202
Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors
Abstract
Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.
Similar articles
-
Electronic detection of microRNA at attomolar level with high specificity.Anal Chem. 2013 Sep 3;85(17):8061-4. doi: 10.1021/ac4018346. Epub 2013 Aug 16. Anal Chem. 2013. PMID: 23909395
-
Programming nanopore ion flow for encoded multiplex microRNA detection.ACS Nano. 2014 Apr 22;8(4):3444-50. doi: 10.1021/nn406339n. Epub 2014 Mar 26. ACS Nano. 2014. PMID: 24654890 Free PMC article.
-
Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore.ACS Nano. 2013 May 28;7(5):3962-9. doi: 10.1021/nn305789z. Epub 2013 Apr 10. ACS Nano. 2013. PMID: 23550815 Free PMC article.
-
Detection of miRNAs with a nanopore single-molecule counter.Expert Rev Mol Diagn. 2012 Jul;12(6):573-84. doi: 10.1586/erm.12.58. Expert Rev Mol Diagn. 2012. PMID: 22845478 Free PMC article. Review.
-
Determining the Physical Properties of Molecules with Nanometer-Scale Pores.ACS Sens. 2018 Feb 23;3(2):251-263. doi: 10.1021/acssensors.7b00680. Epub 2018 Jan 30. ACS Sens. 2018. PMID: 29381331 Review.
Cited by
-
When less is more in a nanopore.Nat Nanotechnol. 2012 Apr 5;7(4):212-3. doi: 10.1038/nnano.2012.48. Nat Nanotechnol. 2012. PMID: 22481488 No abstract available.
-
Molecular transport through large-diameter DNA nanopores.Nat Commun. 2016 Sep 23;7:12787. doi: 10.1038/ncomms12787. Nat Commun. 2016. PMID: 27658960 Free PMC article.
-
A perspective on computer vision in biosensing.Biomicrofluidics. 2024 Jan 12;18(1):011301. doi: 10.1063/5.0185732. eCollection 2024 Jan. Biomicrofluidics. 2024. PMID: 38223547 Free PMC article.
-
Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.PLoS One. 2016 Jun 10;11(6):e0157399. doi: 10.1371/journal.pone.0157399. eCollection 2016. PLoS One. 2016. PMID: 27285088 Free PMC article.
-
Application of atomic force microscopy in cancer research.J Nanobiotechnology. 2018 Dec 11;16(1):102. doi: 10.1186/s12951-018-0428-0. J Nanobiotechnology. 2018. PMID: 30538002 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources